Skip to main content

Part of the book series: Philips Technical Library ((PTL))

  • 39 Accesses

Abstract

The basic function of the spectrometer is to provide a means of isolating a selected wavelength from the polychromatic beam of characteristic radiation excited in the sample, in order that individual intensity measurements can be made. Although this is normally achieved by making use of the specific diffracting property of large single crystals, this is not by any means the only way of selecting a specific wavelength range and other methods which have been employed include the use of diffraction gratings,1) balanced filters2-3) and energy resolution in the form of pulse height selection. The usual wavelength range of the conventional X-ray spectrometer is between 0.2 to 15 Å and over this region the single crystal is certainly the most efficient and versatile means of dispersion, particularly in combination with pulse height selection for the removal of harmonic overlap (See Chapter 4). However, the recent successful attempts to extend the operating range of the X-ray spectrometer into the soft X-ray and vacuum ultra-violet region have provided greater incentive for a more detailed study of the use of gratings in this region as well as the exclusive use of pulse height selection. Since measurements in the soft X-ray region invariably require some modification to the commercially available spectrometer, usually by way of modification to the source of primary radiation and the detector, it is the intention to first consider dispersion in the conventional wavelength range and then to discuss the soft X-ray region as a separate topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. holliday., j. e., 1960, Rev. Sci. Instr. 31, 891.

    Article  Google Scholar 

  2. tanemura, t., 1961, Rev. Sci. Instr., 32, 364.

    Article  Google Scholar 

  3. mecke, p., 1963, Z. Analyt, Chem., 193, 241.

    Article  Google Scholar 

  4. spielberg, n., parrish, w. and lowitzsch, k., 1959, Spectrochim. Acta, 13, 564.

    Article  Google Scholar 

  5. johann, h. h., 1931, Z. Physik, 69, 185.

    Article  Google Scholar 

  6. johansson, t., 1933, Z. Physik, 82, 507.

    Article  Google Scholar 

  7. elion, h. a. and ogilvie, r. e., 1962, Rev. Sci. Instr., 33, 753.

    Article  Google Scholar 

  8. cauchois, y., 1932, J. Phys. Radium, 3, 320.

    Article  Google Scholar 

  9. birks. l. s. and brooks. e. j., 1955, Analyt. Chem., 27. 1147.

    Article  Google Scholar 

  10. liebhafsky, pfeiffer, winslow and zemany, X-Ray Absorption and Emission in Analytical Chemistry, Wiley, New York, 1960, Ch. 4.

    Google Scholar 

  11. birks, X-Ray Spectrochemical Analysis, Interscience, New York, 1959, Ch. 3.

    Google Scholar 

  12. birks, Electron Probe Microanalysis, Interscience, New York, 1963, Ch. 6.

    Google Scholar 

  13. wytzes, s. a., 1961, Philips Research Reports, 16, 201.

    Google Scholar 

  14. soller, w., 1924, Phys. Rev., 24, 158.

    Article  Google Scholar 

  15. buwalda, j., 1964, Philips Serving Science and Industry. 10, 22.

    Google Scholar 

  16. wytzes, s. a., Philips Technical Review, 27,11.

    Google Scholar 

  17. klug, alexander, X-Ray Diffraction Procedures, Wiley, New York, 1954, Ch. 3.

    MATH  Google Scholar 

  18. rose, h. j., adler, j. and flanagan, f. j., 1963, Appl. Spectroscopy, 17, 81.

    Article  Google Scholar 

  19. parrish, w., Advances in X-Ray Analysis, Plenum, New York, 1964, 118.

    Google Scholar 

  20. spielberg, n. and ladell, j., 1960, J. Appl. Phys., 31, 1659.

    Article  Google Scholar 

  21. spielberg, n., 1965, Rev. Sci, Instr., 36, 1377.

    Article  Google Scholar 

  22. ebert, f. and wagner, a., 1957, Z. Metalk, 48, 616.

    Google Scholar 

  23. macdonald, g. l., Proceedings of 4th M.E.L. Conference on X-Ray Analysis, (Sheffield, 1964), Philips, Eindhoven, 11.

    Google Scholar 

  24. birks, l. s. and siomkajlo, j. m., 1962, Spectrochim. Acta, 18, 363.

    Article  Google Scholar 

  25. fischer, d. w. and baun, w. l., 1964, U.S. Technical Documentary Report, No. RTD-TDR-63-4232.

    Google Scholar 

  26. dinklage, j. and frericks, r., 1963, J. Appl. Phys., 34, 1633.

    Article  Google Scholar 

  27. langmuir, f., 1939. Proc. Roy. Soc., 170A, 1.

    Article  Google Scholar 

  28. baun, w. l. and fischer, d. w., 1963, U.S. Technical Documentary Report, No. ASD-TDR-63-310.

    Google Scholar 

  29. franks, Proceedings of 3rd International Symposium on X-Ray Optics and X-Ray Microanalysis, Academic Press, New York, 1963, p. 199.

    Google Scholar 

  30. sayce, l. a. and franks, a., 1964, Proc. Roy. Soc., 282A, 353.

    Article  Google Scholar 

Download references

Authors

Copyright information

© 1970 N.V. Philips’ Gloeilampenfabrieken

About this chapter

Cite this chapter

Jenkins, R., De Vries, J.L. (1970). Dispersion. In: Practical X-Ray Spectrometry. Philips Technical Library. Palgrave, London. https://doi.org/10.1007/978-1-349-00055-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-00055-5_2

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-00057-9

  • Online ISBN: 978-1-349-00055-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics