Physics of X-Rays

  • R. Jenkins
  • J. L. De Vries
Part of the Philips Technical Library book series (PTL)


The X-ray region is normally considered to be that part of the electromagnetic spectrum lying between 0.1-100 Å, being bounded by the γ-ray region to the short wavelength side and the vacuum ultra-violet region to the long wavelength side. The actual boundary between the X-ray and vacuum ultra-violet region is not clearly defined and for many years the 50–500 Å mid-region has not been exploited by practical spectroscopists to any great degree. Over the last few years however this wavelength range has been examined both from the short wavelength end by the X-ray spectroscopist and from the long wavelength end by workers in the fields of plasma and astrophysics. It is now common practice to refer to this particular region as the soft X-ray and vacuum ultra-violet region.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    röntgen, w. c., 1898, Ann. Physik u. Chem., 64, 1.CrossRefGoogle Scholar
  2. 2.
    compton and allison, X-rays in theory and experiment, Van Nostrand, New York, 1935.Google Scholar
  3. 3.
    freidrich, w., knipping, p. and laue, m. von, 1912, Ber. Bayer. Akad. Wiss., 303.Google Scholar
  4. 4.
    kulenkampff, h., 1922, Ann. Physik, 69, 594.Google Scholar
  5. 5.
    duane, w. and hunt, f. l., 1915, Phys. Rev., 6, 166.CrossRefGoogle Scholar
  6. 6.
    kramers, h. a., 1923, Phil. Mag., 46, 836.CrossRefGoogle Scholar
  7. 7.
    smeaton, w. a., 1965, Chemistry in Britain, 1, 353.Google Scholar
  8. 8.
    tsutsumi, k., 1959, J. Phys. Soc. Japan, 14, 1696.CrossRefGoogle Scholar
  9. 9.
    kakuschadse, t. j., 1959, Ann. Physik., 3, 352.CrossRefGoogle Scholar
  10. 10.
    auger, p., Thesis, Paris, 1926.Google Scholar
  11. 11.
    burhop, The Auger Effect, University Press, Cambridge, 1952.MATHGoogle Scholar
  12. 12.
    kuhn, Atomic Spectra, Longmans, London, 1962.Google Scholar
  13. 13.
    jopson, r. c., mark, h., swift, c. d. and williamson, m. a., 1963, Phys. Key., 131, 1165.Google Scholar
  14. 14.
    glocker, r. and schrieber, h., 1928, Ann. Physik., 85, 1089.CrossRefGoogle Scholar
  15. 15.
    fox, j. g. m., 1963. J. Inst. Metals. 91, 239.Google Scholar
  16. 16.
    hans, a., hancart, j. and houbart, i., Analyse par les rayonnements X, (Bruxelles, 1964), Philips, Eindhoven.Google Scholar
  17. *17.
    birks, Electron Probe Microanalysis, Wiley, New York, 1963.Google Scholar
  18. 18.
    cameron, j. f. and rhodes, j. r., 1961, Nucleonics, 19, 53.Google Scholar
  19. 19.
    seibel. g., traaon. j. y. and martinelli, p., 1961, Rev. Universelle. des Mines, 18, 260.Google Scholar
  20. 20.
    watt, j. s., 1964, The International Journal of Applied Radiation and Isotopes, 15, 617.CrossRefGoogle Scholar
  21. 21.
    henke, Advances in X-ray analysis, Plenum, New York, 1961, 5, 288.Google Scholar
  22. 22.
    wykoff, r. w. g. and davidson, f. d., 1964, Rev. Sci. Instr., 35, 381.CrossRefGoogle Scholar
  23. 23.
    dunne and miller, Developments in Applied Spectroscopy, Plenum, New York, 1964, 4. 33.Google Scholar
  24. 24.
    bernstein, Developments in Applied Spectroscopy, Plenum, New York, 1964, 4, 45.Google Scholar
  25. 25.
    victoreen, j. a., 1949, J. Appl. Phys., 20, 1141.CrossRefGoogle Scholar
  26. 26.
    International Tables for X-ray Crystallography, Kynoch, Birmingham, 1962, 3.Google Scholar
  27. 27.
    klein, o. and nishina, y., 1928, Z. Physik, 52, 853.CrossRefGoogle Scholar
  28. 28.
    compton, a. h., 1923, Phys. Rev., 21, 485.Google Scholar
  29. 29.
    birks, l. s., 1960, Spectrochim. Acta, 148.Google Scholar
  30. *30.
    spielberg, n., 1959, Philips Research Reports, 14, 215.Google Scholar
  31. 31.
    muller, r., 1962, Spectrochim. Acta, 18, 123 and 1515.CrossRefGoogle Scholar

Copyright information

© N.V. Philips’ Gloeilampenfabrieken 1970

Authors and Affiliations

  • R. Jenkins
  • J. L. De Vries

There are no affiliations available

Personalised recommendations