Skip to main content

Structure- and Function-Aware Substitution Matrices via Learnable Graph Matching

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14758))

  • 209 Accesses

Abstract

Substitution matrices, which are crafted to quantify the functional impact of substitutions or deletions in biomolecules, are central component of remote homology detection, functional element discovery, and structure prediction algorithms. In this work we explore the use of biological structures and prior knowledge about molecular function (e.g. experimental data or functional annotations) as additional information for building more expressive substitution matrices compared to the traditional frequency-based methods. External prior knowledge in the form of family annotations have been exploited for specialized sequence alignment methods, and substitution matrices on structural alphabets have led to advances in remote homology detection. However, no method has integrated both structural information as well as external priors without the need of pre-curated alignments.

Here we propose a general algorithmic framework for learning structure-based substitution matrices automatically conditioned on any prior knowledge. In particular, we represent the structures of interest as graphs and we learn, using graph neural networks, suitable substitution cost matrices such that the resulting graph matching metric correlates with the prior at hand. Our method shows promising performance in functional similarity classification tasks and molecular database searching and shows potential for interpreting the functional importance of substructures.

Code and data are available at:

https://github.com/BorgwardtLab/GraphMatchingSubstitutionMatrices.

P. Pellizzoni and C. Oliver—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, Y., Ding, H., Bian, S., Chen, T., Sun, Y., Wang, W.: SimGNN: a neural network approach to fast graph similarity computation. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 384–392 (2019)

    Google Scholar 

  2. Bateman, A., et al.: The PFAM protein families database. Nucleic Acids Res. 32(suppl_1), D138–D141 (2004)

    Google Scholar 

  3. Bissantz, C., Kuhn, B., Stahl, M.: A medicinal chemist’s guide to molecular interactions. J. Med. Chem. 53(14), 5061–5084 (2010)

    Article  Google Scholar 

  4. Blumenthal, D.B., Boria, N., Gamper, J., Bougleux, S., Brun, L.: Comparing heuristics for graph edit distance computation. VLDB J. 29(1), 419–458 (2020)

    Google Scholar 

  5. , D.B., Gamper, J.: Improved lower bounds for graph edit distance. IEEE Trans. Knowl. Data Eng. 30(3), 503–516 (2017)

    Google Scholar 

  6. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph edit distance as a quadratic assignment problem. Pattern Recogn. Lett. 87, 38–46 (2017). Advances in Graph-Based Pattern Recognition

    Google Scholar 

  7. Brem, H., Stein, A.B., Rosenkranz, H.S.: The mutagenicity and DNA-modifying effect of haloalkanes. Cancer Res. 34(10), 2576–2579 (1974)

    Google Scholar 

  8. Bunke, H., Riesen, K.: Graph classification based on dissimilarity space embedding. In: da Vitoria Lobo, N., et al. (eds.) SSPR /SPR 2008. LNCS, vol. 5342, pp. 996–1007. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89689-0_103

    Chapter  Google Scholar 

  9. Bunke, H., Riesen, K.: Graph edit distance–optimal and suboptimal algorithms with applications. In: Analysis of Complex Networks: From Biology to Linguistics, pp. 113–143 (2009)

    Google Scholar 

  10. Carletti, V., Gaüzère, B., Brun, L., Vento, M.: Approximate graph edit distance computation combining bipartite matching and exact neighborhood substructure distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 188–197. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7_19

    Chapter  Google Scholar 

  11. Chicco, D.: Siamese neural networks: an overview. In: Cartwright, H. (ed.) Artificial Neural Networks. MMB, vol. 2190, pp. 73–94. Springer, New York (2021). https://doi.org/10.1007/978-1-0716-0826-5_3

    Chapter  Google Scholar 

  12. Chithrananda, S., Grand, G., Ramsundar, B.: ChemBERTa: large-scale self-supervised pretraining for molecular property prediction. arXiv preprint arXiv:2010.09885 (2020)

  13. Doan, K.D., Manchanda, S., Mahapatra, S., Reddy, C.K.: Interpretable graph similarity computation via differentiable optimal alignment of node embeddings. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 665–674 (2021)

    Google Scholar 

  14. Eklund, A.C., Friis, P., Wernersson, R., Szallasi, Z.: Optimization of the BLASTN substitution matrix for prediction of non-specific DNA microarray hybridization. Nucleic Acids Res. 38(4), e27–e27 (2010)

    Google Scholar 

  15. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  16. Gligorijević, V., et al.: Structure-based protein function prediction using graph convolutional networks. Nat. Commun. 12(1), 3168 (2021)

    Google Scholar 

  17. Gotoh, O.: Multiple sequence alignment: algorithms and applications. Adv. Biophys. 36, 159–206 (1999)

    Article  Google Scholar 

  18. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, pp. 1735–1742. IEEE (2006)

    Google Scholar 

  19. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices. Adv. Protein Chem. 54, 73–98 (2000)

    Google Scholar 

  20. Heo, J., Lee, S., Ahn, S., Kim, D.: EPIC: graph augmentation with edit path interpolation via learnable cost. arXiv preprint arXiv:2306.01310 (2023)

  21. Hofacker, I.L., Bernhart, S.H.F., Stadler, P.F.: Alignment of RNA base pairing probability matrices. Bioinformatics 20(14), 2222–2227 (2004)

    Google Scholar 

  22. Illergård, K., Ardell, D.H., Elofsson, A.: Structure is three to ten times more conserved than sequence-a study of structural response in protein cores. Proteins Struct. Function Bioinform. 77(3), 499–508 (2009)

    Google Scholar 

  23. Keul, F., Hess, M., Goesele, M., Hamacher, K.: PFASUM: a substitution matrix from PFAM structural alignments. BMC Bioinform. 18, 1–14 (2017)

    Article  Google Scholar 

  24. Koshi, J.M., Goldstein, R.A.: Context-dependent optimal substitution matrices. Protein Eng. Des. Sel. 8(7), 641–645 (1995)

    Google Scholar 

  25. Kucera, T., Oliver, C., Chen, D., Borgwardt, K.: ProteinShake: building datasets and benchmarks for deep learning on protein structures. In: Thirty-Seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2023)

    Google Scholar 

  26. Kulmanov, M., Hoehndorf, R.: DeepGOPlus: improved protein function prediction from sequence. Bioinformatics 36(2), 422–429 (2020)

    Article  Google Scholar 

  27. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for learning the similarity of graph structured objects. In: International Conference on Machine Learning, pp. 3835–3845. PMLR (2019)

    Google Scholar 

  28. Llinares-López, F., Berthet, Q., Blondel, M., Teboul, O., Vert, J.-P.: Deep embedding and alignment of protein sequences. Nat. Methods 20(1), 104–111 (2023)

    Article  Google Scholar 

  29. Mallet, V., Oliver, C., Broadbent, J., Hamilton, W.L., Waldispühl, J.: RNAglib: a Python package for RNA 2.5 D graphs. Bioinformatics 38(5), 1458–1459 (2022)

    Google Scholar 

  30. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.: Tudataset: a collection of benchmark datasets for learning with graphs. arXiv preprint arXiv:2007.08663 (2020)

  31. Neuhaus, M., Bunke, H.: A probabilistic approach to learning costs for graph edit distance. In: Proceedings of the 17th International Conference on Pattern Recognition. ICPR 2004, vol. 3, pp. 389–393. IEEE (2004)

    Google Scholar 

  32. Oliver, C., et al.: Augmented base pairing networks encode RNA-small molecule binding preferences. Nucleic Acids Res. 48(14), 7690–7699 (2020)

    Google Scholar 

  33. Porter, C.T., Bartlett, G.J., Thornton, J.M.: The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 32(suppl_1), D129–D133 (2004)

    Google Scholar 

  34. Qiu, J., Elber, R.: SSALN: an alignment algorithm using structure-dependent substitution matrices and gap penalties learned from structurally aligned protein pairs. Proteins Struct Function Bioinform. 62(4), 881–891 (2006)

    Google Scholar 

  35. Ranjan, R., Grover, S., Medya, S., Chakaravarthy, V., Sabharwal, Y., Ranu, S.: Greed: a neural framework for learning graph distance functions. In: Advances in Neural Information Processing Systems, vol. 35, pp. 22518–22530 (2022)

    Google Scholar 

  36. Riba, P., Fischer, A., Lladós, J., Fornés, A.: Learning graph edit distance by graph neural networks. Pattern Recogn. 120, 108132 (2021)

    Article  Google Scholar 

  37. Rose, P.W., et al.: The RCSB protein data bank: new resources for research and education. Nucleic Acids Res. 41(D1), D475–D482 (2012)

    Google Scholar 

  38. Sarver, M., Zirbel, C.L., Stombaugh, J., Mokdad, A., Leontis, N.B.: FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J. Math. Biol. 56, 215–252 (2008)

    Google Scholar 

  39. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  40. Sheridan, R.P.: The most common chemical replacements in drug-like compounds. J. Chem. Inf. Comput. Sci. 42(1), 103–108 (2002)

    Google Scholar 

  41. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12(9) (2011)

    Google Scholar 

  42. Song, D., et al.: Parameterized blosum matrices for protein alignment. IEEE/ACM Trans. Comput. Biol. Bioinform. 12(3), 686–694 (2014)

    Google Scholar 

  43. Sutormin, R.A., Rakhmaninova, A.B., Gelfand, M.S.: Batmas30: amino acid substitution matrix for alignment of bacterial transporters. Proteins Struct Function Bioinform. 51(1), 85–95 (2003)

    Google Scholar 

  44. Tung, C.-H., Huang, J.-W., Yang, J.-M.: Kappa-alpha plot derived structural alphabet and blosum-like substitution matrix for rapid search of protein structure database. Genome Biol. 8(3), 1–16 (2007)

    Article  Google Scholar 

  45. van Kempen, M., et al.: Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. pp. 1–4 (2023)

    Google Scholar 

  46. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  47. Wilbur, W.J.: On the PAM matrix model of protein evolution. Mol. Biol. Evol. 2(5), 434–447 (1985)

    Google Scholar 

  48. Wu, C.-Y., Manmatha, R., Smola, A.J., Krahenbuhl, P.: Sampling matters in deep embedding learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2840–2848 (2017)

    Google Scholar 

  49. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: International Conference on Learning Representations (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Pellizzoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pellizzoni, P., Oliver, C., Borgwardt, K. (2024). Structure- and Function-Aware Substitution Matrices via Learnable Graph Matching. In: Ma, J. (eds) Research in Computational Molecular Biology. RECOMB 2024. Lecture Notes in Computer Science, vol 14758. Springer, Cham. https://doi.org/10.1007/978-1-0716-3989-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3989-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-1-0716-3988-7

  • Online ISBN: 978-1-0716-3989-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics