Skip to main content

Enzymatically Modified Starch

  • Chapter
  • First Online:
Standardized Procedures and Protocols for Starch

Abstract

Starch is a semicrystalline polymer that is abundantly present in nature as a source of energy storage. It has widespread applications in food and non-food industries, such as pharmaceutical, textile, and paper, due to its low cost, bioavailability, biodegradability, and easy accessibility. The demand for enzymatically modified starch is increasing day by day due to their role in nutritional enhancement and retaining better physico-chemical properties. In addition, the functional properties of native starch, such as thickeners, gelling agents, binders, encapsulants, and swelling agents, make it a foremost choice for all the stakeholders. However, inherent properties like quick retrogradation, thermal and shear instability, and sensitivity to acidic and high-temperature environments restrict its prevalent industrial applications. In this regard, nutritional, functional, physico-chemical, and structural modifications have been made to native starch by chemical, physical, and enzymatic methods. Among them, enzymatic modifications of native starch have been extensively explored as a green technology compared to toxic chemical approaches and energy-intensive physical approaches, resulting in modified starches with altered gelation, viscosity, and solubility characteristics. This chapter provides a comprehensive discussion on numerous protocols and methods of enzymatic modifications of starch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perin D, Murano E (2017) Starch polysaccharides in the human diet: effect of the different source and processing on its absorption. Nat Prod Commun 12:837–853. https://doi.org/10.1177/1934578x1701200606

    Article  CAS  Google Scholar 

  2. Cornejo-Ramírez YI, Martínez-Cruz O, Del Toro-Sánchez CL, Wong-Corral FJ, Borboa-Flores J, Cinco-Moroyoqui FJ (2018) The structural characteristics of starches and their functional properties. CYTA – J Food 16:1003–1017. https://doi.org/10.1080/19476337.2018.1518343

    Article  CAS  Google Scholar 

  3. Bangar SP, Ashogbon AO, Singh A, Chaudhary V, Whiteside WS (2022) Enzymatic modification of starch: a green approach for starch applications. Carbohydr Polym 287:119265. https://doi.org/10.1016/j.carbpol.2022.119265

    Article  CAS  Google Scholar 

  4. Zia-ud-Din, Xiong H, Fei P (2017) Physical and chemical modification of starches: a review. Crit Rev Food Sci Nutr 57:2691–2705. https://doi.org/10.1080/10408398.2015.1087379

    Article  CAS  PubMed  Google Scholar 

  5. Onyango C (2016) Starch and modified starch in bread making: a review. Afr J Food Sci 10:344–351. https://doi.org/10.5897/ajfs2016.1481

    Article  CAS  Google Scholar 

  6. Punia S (2020) Barley starch modifications: physical, chemical and enzymatic – a review. Int J Biol Macromol 144:578–585. https://doi.org/10.1016/j.ijbiomac.2019.12.088

    Article  CAS  PubMed  Google Scholar 

  7. Guo L (2018) Sweet potato starch modified by branching enzyme, β-amylase and transglucosidase. Food Hydrocoll 83:182–189. https://doi.org/10.1016/j.foodhyd.2018.05.005

    Article  CAS  Google Scholar 

  8. Park K-H, Park JH, Lee S, Yoo SH, Kim JW (2008) Enzymatic modification of starch for food industry, carbohydrate-active enzymes: structure, function and applications. Woodhead Publishing Limited. https://doi.org/10.1533/9781845695750.2.157

    Book  Google Scholar 

  9. Wang S, Wang J, Liu Y, Liu X (2020) Starch modification and application. Starch Structure, Functionality and Application in Foods, pp 131–149

    Google Scholar 

  10. Park SH, Na Y, Kim J, Kang SD, Park KH (2018) Properties and applications of starch modifying enzymes for use in the baking industry. Food Sci Biotechnol 27:299–312. https://doi.org/10.1007/s10068-017-0261-5

    Article  CAS  PubMed  Google Scholar 

  11. Amaraweera SM, Gunathilake C, Gunawardene OHP, Manamperi A, Fernando CAN, Kulatunga AK, Manipura A (2021) Development of starch-based materials using current modification techniques and their applications: a review. Molecules 26:6880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mamo G, Mattiasson B (2020) Alkaliphiles in biotechnology. Springer

    Book  Google Scholar 

  13. Gopinath SCB, Anbu P, Arshad MKM, Lakshmipriya T, Voon CH, Hashim U, Chinni SV (2017) Biotechnological processes in microbial amylase production. Biomed Res Int 2017:9. https://doi.org/10.1155/2017/1272193

    Article  CAS  Google Scholar 

  14. Prongjit D, Lekakarn H, Bunterngsook B, Aiewviriyasakul K, Sritusnee W, Arunrattanamook N, Champreda V (2022) In-depth characterization of debranching type I pullulanase from Priestia Koreensis Hl12 as potential biocatalyst for starch Saccharification and modification. Catalysts. https://doi.org/10.3390/catal12091014

    Book  Google Scholar 

  15. Davoudi Z, Azizi MH, Barzegar M (2022) Porous corn starch obtained from combined cold plasma and enzymatic hydrolysis: microstructure and physicochemical properties. Int J Biol Macromol 223:790–797. https://doi.org/10.1016/j.ijbiomac.2022.11.058

    Article  CAS  PubMed  Google Scholar 

  16. Leyva-lópez R, Palma-rodríguez HM, López-torres A, Capataz-tafur J, Bello-pérez LA, Vargas-torres A (2019) Use of enzymatically modi fi ed starch in the microencapsulation of ascorbic acid: microcapsule characterization, release behavior and in vitro digestion. Food Hydrocoll 96:259–266. https://doi.org/10.1016/j.foodhyd.2019.04.056

    Article  CAS  Google Scholar 

  17. Jung D, Park C, Kim H, Gyu T, Lee B, Baik M, Yoo S, Seo D (2022) Enzymatic modification of potato starch by amylosucrase according to reaction temperature: effect of branch-chain length on structural, physicochemical, and digestive properties. Food Hydrocoll 122:107086. https://doi.org/10.1016/j.foodhyd.2021.107086

    Article  CAS  Google Scholar 

  18. Zhai Y, Li X, Bai Y, Jin Z, Svensson B (2022) Maltogenic α-amylase hydrolysis of wheat starch granules: mechanism and relation to starch retrogradation. Food Hydrocoll 124:107256. https://doi.org/10.1016/j.foodhyd.2021.107256

    Article  CAS  Google Scholar 

  19. Xiao W, He H, Dong Q, Huang Q, An F, Song H (2023) Effects of high-speed shear and double-enzymatic hydrolysis on the structural and physicochemical properties of rice porous starch. Int J Biol Macromol 234:123692. https://doi.org/10.1016/j.ijbiomac.2023.123692

    Article  CAS  PubMed  Google Scholar 

  20. Li H, Gui Y, Li J, Zhu Y, Cui B, Guo L (2020) Modification of rice starch using a combination of autoclaving and triple enzyme treatment: structural, physicochemical and digestibility properties. Int J Biol Macromol 144:500–508. https://doi.org/10.1016/j.ijbiomac.2019.12.112

    Article  CAS  PubMed  Google Scholar 

  21. Wang C, Zhang X, Tian X, Zhang Z, Zhang X (2023) Physical and enzymatic modifications of starch from blue highland barley and their characterizations, digestibility, and lipolysis inhibitory activities. LWT 180:114722. https://doi.org/10.1016/j.lwt.2023.114722

    Article  CAS  Google Scholar 

  22. Shah A, Masoodi FA, Gani A, Ashwar B (2018) Dual enzyme modified oat starch: structural characterisation, rheological properties, and digestibility in simulated GI tract. Int J Biol Macromol 106:140–147. https://doi.org/10.1016/j.ijbiomac.2017.08.013

    Article  CAS  PubMed  Google Scholar 

  23. Semwal J, Meera MS (2023) Modification of sorghum starch as a function of pullulanase hydrolysis and infrared treatment. Food Chem 416:135815. https://doi.org/10.1016/j.foodchem.2023.135815

    Article  CAS  PubMed  Google Scholar 

  24. Benítez RB, Elvira Tabares WF, Lenis Velásquez LA, Hurtado Sánchez CI, Salinas Cruel OA (2021) Enzymatic hydrolysis as a tool to improve total digestibility and techno-functional properties of pigeon pea (Cajanus cajan) starch. Heliyon 7:e07817. https://doi.org/10.1016/j.heliyon.2021.e07817

    Article  CAS  Google Scholar 

  25. Christensen SJ, Madsen MS, Zinck SS, Hedberg C, Sørensen OB, Svensson B, Meyer AS (2023) Enzymatic potato starch modification and structure-function analysis of six diverse GH77 4-alpha-glucanotransferases. Int J Biol Macromol 224:105–114. https://doi.org/10.1016/j.ijbiomac.2022.10.107

    Article  CAS  PubMed  Google Scholar 

  26. Jorge F-F, Jairo C-CER-SES-M, H´ector C-V (2023) Hydrothermal processes and simultaneous enzymatic hydrolysis in the production of modified cassava starches with porous-surfaces. Heliyon 9:e17742. https://doi.org/10.1016/j.heliyon.2023.e17742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li J, Fan J, Hu F (2023) Ultrasound-assisted acid/enzymatic hydrolysis preparation of loquat kernel porous starch: a carrier with efficient palladium loading capacity. Int J Biol Macromol 247:125676. https://doi.org/10.1016/j.ijbiomac.2023.125676

    Article  CAS  PubMed  Google Scholar 

  28. Almeida RLJ, dos Santos Pereira T, de Andrade Freire V, Santiago ÂM, Oliveira HML, de Sousa Conrado L, de Gusmão RP (2019) Influence of enzymatic hydrolysis on the properties of red rice starch. Int J Biol Macromol 141:1210–1219. https://doi.org/10.1016/j.ijbiomac.2019.09.072

    Article  CAS  PubMed  Google Scholar 

  29. Grewal N, Faubion J, Feng G, Kaufman RC, Wilson JD, Shi YC (2015) Structure of waxy maize starch hydrolyzed by maltogenic α-amylase in relation to its retrogradation. J Agric Food Chem 63:4196. https://doi.org/10.1021/jf506215s

    Article  CAS  PubMed  Google Scholar 

  30. Zhai X, Wu K, Ji R, Zhao Y, Lu J, Yu Z, Xu X, Huang J (2022) Structure and function insight of the α-glucosidase QsGH13 from Qipengyuania seohaensis sp. SW-135. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.849585

  31. Cheng W, Sun Y, Xia X, Yang L, Fan M, Li Y, Wang L, Qian H (2022) Effects of β-amylase treatment conditions on the gelatinization and retrogradation characteristics of wheat starch Wen. Food Hydrocoll 124:107286

    Article  CAS  Google Scholar 

  32. Li H, Li J, Xiao Y, Cui B, Fang Y, Guo L (2019) In vitro digestibility of rice starch granules modified by β-amylase, transglucosidase and pullulanase. Int J Biol Macromol 136:1228–1236

    Article  CAS  PubMed  Google Scholar 

  33. Xu Y, Sun L, Gu Y, Cheng G, Fan X, Ding Y, Zhuang Y (2023) Improving the emulsification performance of adlay seed starch by esterification combined with ultrasonication and enzymatic treatment. Int J Biol Macromol 242:124839. https://doi.org/10.1016/j.ijbiomac.2023.124839

    Article  CAS  PubMed  Google Scholar 

  34. Hutabarat DJC, Stevensen J (2023) Physicochemical properties of enzymatically modified starch: a review. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/1169/1/012093

    Book  Google Scholar 

  35. Sorndech W, Sagnelli D, Meier S, Jansson AM, Lee B, Hamaker BR, Rolland-sabaté A, Hebelstrup KH, Tongta S, Blennow A (2016) Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates. Carbohydr Polym 152:51–61. https://doi.org/10.1016/j.carbpol.2016.06.097

    Article  CAS  PubMed  Google Scholar 

  36. Ulbrich M, Asiri SA, Bussert R, Flöter E (2021) Enzymatic modification of granular potato starch using Isoamylase—investigation of morphological, physicochemical, molecular, and techno-functional properties. Starch 73:1–9. https://doi.org/10.1002/star.202000080

    Article  CAS  Google Scholar 

  37. Asiri SA, Flöter E, Ulbrich M (2019) Enzymatic modification of granular potato starch—effect of debranching on morphological, molecular, and functional properties. Starch/Staerke 71. https://doi.org/10.1002/star.201900060

  38. Demirkesen-Bicak H, Tacer-Caba Z, Nilufer-Erdil D (2018) Pullulanase treatments to increase resistant starch content of black chickpea (Cicer arietinum L.) starch and the effects on starch properties. Int J Biol Macromol 111:505–513. https://doi.org/10.1016/j.ijbiomac.2018.01.026

    Article  CAS  PubMed  Google Scholar 

  39. Hu A, Chen X, Wang J, Wang X, Zheng J, Wang L (2021) Effects on the structure and properties of native corn starch modified by enzymatic debranching (ED), microwave assisted esterification with citric acid (MCAE) and by the dual ED/MCAE treatment. Int J Biol Macromol 171:123–129. https://doi.org/10.1016/j.ijbiomac.2021.01.012

    Article  CAS  PubMed  Google Scholar 

  40. Huang TT, Zhou DN, Jin ZY, Xu XM, Chen HQ (2015) Effect of debranching and heat-moisture treatments on structural characteristics and digestibility of sweet potato starch. Food Chem 187:218–224. https://doi.org/10.1016/j.foodchem.2015.04.050

    Article  CAS  PubMed  Google Scholar 

  41. Li X, Wang Y, Lee BH, Li D (2018) Reducing digestibility and viscoelasticity of oat starch after hydrolysis by pullulanase from Bacillus acidopullulyticus. Food Hydrocoll 75:88–94. https://doi.org/10.1016/j.foodhyd.2017.09.009

    Article  CAS  Google Scholar 

  42. Precha-Atsawanan S, Puncha-arnon S, Wandee Y, Uttapap D, Puttanlek C, Rungsardthong V (2018) Physicochemical properties of partially debranched waxy rice starch. Food Hydrocoll 79:71–80. https://doi.org/10.1016/j.foodhyd.2017.12.014

    Article  CAS  Google Scholar 

  43. Shi J, Sweedman MC, Shi YC (2018) Structural changes and digestibility of waxy maize starch debranched by different levels of pullulanase. Carbohydr Polym 194:350–356. https://doi.org/10.1016/j.carbpol.2018.04.053

    Article  CAS  PubMed  Google Scholar 

  44. Zeng F, Ma F, Gao Q, Yu S, Kong F, Zhu S (2014) Debranching and temperature-cycled crystallization of waxy rice starch and their digestibility. Carbohydr Polym 113:91–96. https://doi.org/10.1016/j.carbpol.2014.06.057

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Li C, Gu Z, Cheng L, Hong Y, Li Z (2019) Digestion properties of corn starch modified by α-D-glucan branching enzyme and cyclodextrin glycosyltransferase. Food Hydrocoll 89:534. https://doi.org/10.1016/j.foodhyd.2018.11.025

    Article  CAS  Google Scholar 

  46. Sorndech W, Meier S, Jansson AM, Sagnelli D, Hindsgaul O, Tongta S, Blennow A (2015) Synergistic amylomaltase and branching enzyme catalysis to suppress cassava starch digestibility. Carbohydr Polym 132:409–418. https://doi.org/10.1016/j.carbpol.2015.05.084

    Article  CAS  PubMed  Google Scholar 

  47. Leoni C, Gattulli BAR, Pesole G, Ceci LR, Volpicella M (2021) Amylomaltases in extremophilic microorganisms. Biomolecules 11:1335. https://doi.org/10.3390/biom11091335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen Y, McClements DJ, Peng X, Chen L, Xu Z, Meng M, Ji H, Long J, Qiu C, Zhao J, Jin Z (2023) Research progresses on enzymatic modification of starch with 4-α-glucanotransferase. Trends Food Sci Technol 131:164–174. https://doi.org/10.1016/j.tifs.2022.11.025

    Article  CAS  Google Scholar 

  49. Cho KH, Auh JH, Ryu JH, Kim JH, Park KH, Park CS, Yoo SH (2009) Structural modification and characterization of rice starch treated by Thermus aquaticus 4-α-glucanotransferase. Food Hydrocoll 23:2403–2409. https://doi.org/10.1016/j.foodhyd.2009.06.019

    Article  CAS  Google Scholar 

  50. Park HR, Kang J, Rho SJ, Kim YR (2020) Structural and physicochemical properties of enzymatically modified rice starch as influenced by the degree of enzyme treatment. J Carbohydr Chem 39:250–266. https://doi.org/10.1080/07328303.2020.1788574

    Article  CAS  Google Scholar 

  51. Hassanein WS, İspirli H, Dertli E, Yilmaz MT (2023) Structural characterization of potato starch modified by a 4, 6-α-glucanotransferase B from Lactobacillus reuteri E81. Int J Biol Macromol 242:124988. https://doi.org/10.1016/j.ijbiomac.2023.124988

    Article  CAS  PubMed  Google Scholar 

  52. Wang T, Wang F, Ma R, Tian Y (2022) Enzymatically modified starch for paper surface sizing: enzymes with different action modes and sites. Carbohydr Polym 291:119636. https://doi.org/10.1016/j.carbpol.2022.119636

    Article  CAS  PubMed  Google Scholar 

  53. Gaenssle ALO, van der Maarel MJEC, Jurak E (2022) The influence of amylose content on the modification of starches by glycogen branching enzymes. Food Chem 393:133294. https://doi.org/10.1016/j.foodchem.2022.133294

    Article  CAS  PubMed  Google Scholar 

  54. Gao L, Wan C, Wang H, Wang P, Yang P, Eeckhout M, Gao J (2023) Changes in the structural and physicochemical characterization of pea starch modified by Bacillus-produced α-amylase. Innov Food Sci Emerg Technol 86:103376. https://doi.org/10.1016/j.ifset.2023.103376

    Article  CAS  Google Scholar 

  55. Almeida RLJ, Rios NS, dos Santos ES (2022) Modification of red rice starch by a combination of hydrothermal pretreatments and α-amylase hydrolysis. Carbohydr Polym 296:119963. https://doi.org/10.1016/j.carbpol.2022.119963

    Article  CAS  PubMed  Google Scholar 

  56. Zheng Y, Chai Z, Kong X, Chen S, Ye X, Tian J (2023) Effect of annealing treatment on the physicochemical properties and enzymatic hydrolysis of different types of starch. Food Chem 403:134153. https://doi.org/10.1016/j.foodchem.2022.134153

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madhumita, M., Nayak, P.P., Nandi, S. (2024). Enzymatically Modified Starch. In: Punia Bangar, S. (eds) Standardized Procedures and Protocols for Starch. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3866-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3866-8_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3865-1

  • Online ISBN: 978-1-0716-3866-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics