Skip to main content

In Vivo Tissue-Specific Knockdown of circRNAs Using shRNAs in Drosophila melanogaster

  • Protocol
  • First Online:
Circular RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2765))

  • 290 Accesses

Abstract

Studying circular RNAs’ function in vivo has been challenging due to the lack of generic tools to manipulate their levels without affecting their linear counterparts. This is particularly challenging as the back-splice junction is the only sequence not shared between the linear and circular version. In this chapter, we describe a method to study circRNA function in vivo targeting shRNAs against the desired back-splice junction to achieve knockdown with tissue-specific resolution in flies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nielsen AF, Bindereif A, Bozzoni I, Hanan M, Hansen TB, Irimia M et al (2022) Best practice standards for circular RNA research. Nat Methods 19:1208–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Patop IL, WĂĽst S, Kadener S (2019) Past, present, and future of circRNAs. EMBO J 38(16):e100836

    Article  PubMed  PubMed Central  Google Scholar 

  3. Broadbent KM, Broadbent JC, Ribacke U, Wirth D, Rinn JL, Sabeti PC (2015) Strand-specific RNA sequencing in plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA. BMC Genomics 16(1):454

    Article  PubMed  PubMed Central  Google Scholar 

  4. Danan M, Schwartz S, Edelheit S, Sorek R (2011) Transcriptome-wide discovery of circular RNAs in archaea. Nucleic Acids Res 40(7):3131–3142

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ji P, Wu W, Chen S, Zheng Y, Zhou L, Zhang J et al (2019) Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep 26(12):3444–3460

    Article  CAS  PubMed  Google Scholar 

  6. Lu T, Cui L, Zhou Y, Zhu C, Fan D, Gong H et al (2015) Transcriptome-wide investigation of circular RNAs in rice. RNA 21:2076–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Santos-Rodriguez G, Voineagu I, Weatheritt RJ (2021) Evolutionary dynamics of circular RNAs in primates. elife 10:e69148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun X, Wang L, Ding J, Wang Y, Wang J, Zhang X et al (2016) Integrative analysis of Arabidopsis thaliana transcriptomics reveals intuitive splicing mechanism for circular RNA. FEBS Lett 590(20):3510–3516

    Article  CAS  PubMed  Google Scholar 

  9. Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN et al (2014) Circular RNA is expressed across the eukaryotic tree of life. PLoS One 9(3):e90859

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  CAS  PubMed  Google Scholar 

  11. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  PubMed  Google Scholar 

  12. Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S et al (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14(3):361–369

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M et al (2014) CircRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

    Article  CAS  PubMed  Google Scholar 

  14. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guo JU, Agarwal V, Guo H, Bartel DP (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hollensen AK, Thomsen HS, Lloret-Llinares M, Kamstrup AB, Jensen JM, Luckmann M et al (2020) circZNF827 nucleates a transcription inhibitory complex to balance neuronal differentiation. elife 9:e58478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885

    Article  CAS  PubMed  Google Scholar 

  18. Gruner H, Cortés-López M, Cooper DA, Bauer M, Miura P (2016) CircRNA accumulation in the aging mouse brain. Sci Rep 6:38907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P et al (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cortes-Lopez M, Gruner MR, Cooper DA, Gruner HN, Voda AI, van der Linden AM et al (2018) Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics 19(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kleaveland B, Shi CY, Stefano J, Bartel DP (2018) A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174(2):350–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Piwecka M, GlaĹľar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A et al (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357:eaam8526

    Article  PubMed  Google Scholar 

  23. Gao X, Ma XK, Li X, Li GW, Liu CX, Zhang J et al (2022) Knockout of circRNAs by base editing back-splice sites of circularized exons. Genome Biol 23(1):16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xia P, Wang S, Ye B, Du Y, Li C, Xiong Z et al (2018) A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity 48(4):688–701

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL et al (2016) The biogenesis of nascent circular RNAs. Cell Rep 15(3):611–624

    Article  CAS  PubMed  Google Scholar 

  26. Pamudurti NR, Patop IL, Krishnamoorthy A, Ashwal-Fluss R, Bartok O, Kadener S (2020) An in vivo strategy for knockdown of circular RNAs. Cell Discov 6(1):52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li S, Li X, Xue W, Zhang L, Yang LZ, Cao SM et al (2021) Screening for functional circular RNAs using the CRISPR-Cas13 system. Nat Methods 18(1):51–59

    Article  PubMed  Google Scholar 

  28. Chang K, Marran K, Valentine A (2014) Hannon GJ (2014) generation of transgenic drosophila expressing shRNAs in the miR-1 backbone. Cold Spring Harb Protoc 5:501–509. https://doi.org/10.1101/pdb.prot080762

    Article  Google Scholar 

  29. Ni JQ, Zhou R, Czech B, Liu LP, Holderbaum L, Yang-Zhou D et al (2011) A genome-scale shRNA resource for transgenic RNAi in drosophila. Nat Methods 8(5):405–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    Article  CAS  PubMed  Google Scholar 

  31. Fish MP, Groth AC, Calos MP, Nusse R (2007) Creating transgenic drosophila by microinjecting the site-specific phiC31 integrase mRNA and a transgene-containing donor plasmid. Nat Protoc 2(10):2325–2331

    Article  CAS  PubMed  Google Scholar 

  32. Roote J, Prokop A (2013) How to design a genetic mating scheme: a basic training package for drosophila genetics. G3 Genes Genomes Genetics 3(2):353–358

    Article  PubMed  PubMed Central  Google Scholar 

  33. Greenspan R (2004) Fly pushing: the theory and practice of drosophila genetics, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  34. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by NIH grants R01GM122406 and AG057700 to SK. We thank Dr. Ane Martin Anduaga for comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kadener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Patop, I.L., Canori, M., Kadener, S. (2024). In Vivo Tissue-Specific Knockdown of circRNAs Using shRNAs in Drosophila melanogaster. In: Dieterich, C., Baudet, ML. (eds) Circular RNAs. Methods in Molecular Biology, vol 2765. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3678-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3678-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3677-0

  • Online ISBN: 978-1-0716-3678-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics