Skip to main content

Real-Time Cell Cycle Imaging in a 3D Cell Culture Model of Melanoma, Quantitative Analysis, Optical Clearing, and Mathematical Modeling

  • Protocol
  • First Online:
3D Cell Culture

Abstract

Aberrant cell cycle progression is a hallmark of solid tumors. Therefore, cell cycle analysis is an invaluable technique to study cancer cell biology. However, cell cycle progression has been most commonly assessed by methods that are limited to temporal snapshots or that lack spatial information. In this chapter, we describe a technique that allows spatiotemporal real-time tracking of cell cycle progression of individual cells in a multicellular context. The power of this system lies in the use of 3D melanoma spheroids generated from melanoma cells engineered with the fluorescent ubiquitination-based cell cycle indicator (FUCCI). This technique, combined with mathematical modeling, allows us to gain further and more detailed insight into several relevant aspects of solid cancer cell biology, such as tumor growth, proliferation, invasion, and drug sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brandner JM, Haass NK (2013) Melanoma’s connections to the tumour microenvironment. Pathology 45(5):443–452. https://doi.org/10.1097/PAT.0b013e328363b3bd

    Article  CAS  PubMed  Google Scholar 

  2. Villanueva J, Herlyn M (2008) Melanoma and the tumor microenvironment. Curr Oncol Rep 10(5):439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ahmed F, Haass NK (2018) Microenvironment-driven dynamic heterogeneity and phenotypic plasticity as a mechanism of melanoma therapy resistance. Front Oncol 8:173. https://doi.org/10.3389/fonc.2018.00173

    Article  PubMed  PubMed Central  Google Scholar 

  4. Beaumont KA, Mohana-Kumaran N, Haass NK (2014) Modeling melanoma in vitro and in vivo. Healthcare 2(1):27–46. https://doi.org/10.3390/healthcare2010027

    Article  Google Scholar 

  5. Santiago-Walker A, Li L, Haass NK et al (2009) Melanocytes: from morphology to application. Skin Pharmacol Physiol 22(2):114–121

    Article  CAS  PubMed  Google Scholar 

  6. Smalley KS, Lioni M, Noma K et al (2008) In vitro three-dimensional tumor microenvironment models for anticancer drug discovery. Expert Opin Drug Discov 3(1):1–10. https://doi.org/10.1517/17460441.3.1.1

    Article  CAS  PubMed  Google Scholar 

  7. Wroblewski D, Mijatov B, Mohana-Kumaran N et al (2013) The BH3-mimetic ABT-737 sensitizes human melanoma cells to apoptosis induced by selective BRAF inhibitors but does not reverse acquired resistance. Carcinogenesis 34(2):237–247. https://doi.org/10.1093/carcin/bgs330

    Article  CAS  PubMed  Google Scholar 

  8. Rebecca VW, Somasundaram R, Herlyn M (2020) Pre-clinical modeling of cutaneous melanoma. Nat Commun 11(1):2858. https://doi.org/10.1038/s41467-020-15546-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  10. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  11. Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12(1):31–46. https://doi.org/10.1158/2159-8290.CD-21-1059

    Article  CAS  PubMed  Google Scholar 

  12. Haass NK, Gabrielli B (2017) Cell cycle-tailored targeting of metastatic melanoma: challenges and opportunities. Exp Dermatol 26(7):649–655. https://doi.org/10.1111/exd.13303

    Article  PubMed  Google Scholar 

  13. Pavey S, Spoerri L, Haass NK et al (2013) DNA repair and cell cycle checkpoint defects as drivers and therapeutic targets in melanoma. Pigment Cell Melanoma Res 26(6):805–816. https://doi.org/10.1111/pcmr.12136

    Article  PubMed  Google Scholar 

  14. Sakaue-Sawano A, Kurokawa H, Morimura T et al (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132(3):487–498

    Article  CAS  PubMed  Google Scholar 

  15. Haass NK, Beaumont KA, Hill DS et al (2014) Real-time cell cycle imaging during melanoma growth, invasion, and drug response. Pigment Cell Melanoma Res 27(5):764–776. https://doi.org/10.1111/pcmr.12274

    Article  CAS  PubMed  Google Scholar 

  16. Spoerri L, Beaumont KA, Anfosso A et al (2017) Real-time cell cycle imaging in a 3D cell culture model of melanoma. Methods Mol Biol 1612:401–416. https://doi.org/10.1007/978-1-4939-7021-6_29

    Article  CAS  PubMed  Google Scholar 

  17. Spoerri L, Gunasingh G, Haass NK (2021) Fluorescence-based quantitative and spatial analysis of tumour spheroids: a proposed tool to predict patient-specific therapy response. Front Digit Health 3:668390. https://doi.org/10.3389/fdgth.2021.668390

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gunasingh G, Browning AP, Haass NK (2022) Rapid optical clearing for semi-high-throughput analysis of tumour spheroids. J Vis Exp. https://doi.org/10.20944/preprints202111.0488.v2

  19. Spoerri L, Tonnessen-Murray CA, Gunasingh G et al (2021) Phenotypic melanoma heterogeneity is regulated through cell-matrix interaction-dependent changes in tumor microarchitecture. BioRxiv. https://doi.org/10.1101/2020.06.09.141747

  20. Beaumont KA, Hill DS, Daignault SM et al (2016) Cell cycle phase-specific drug resistance as an escape mechanism of melanoma cells. J Invest Dermatol 136(7):1479–1489. https://doi.org/10.1016/j.jid.2016.02.805

    Article  CAS  PubMed  Google Scholar 

  21. Kienzle A, Kurch S, Schloder J et al (2017) Dendritic mesoporous silica nanoparticles for pH-stimuli-responsive drug delivery of TNF-alpha. Adv Healthc Mater 6(13):1700012. https://doi.org/10.1002/adhm.201700012

    Article  CAS  Google Scholar 

  22. Smith MP, Rowling EJ, Miskolczi Z et al (2017) Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure. EMBO Mol Med 9(8):1011–1029. https://doi.org/10.15252/emmm.201607156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Emran AA, Chinna Chowdary BR, Ahmed F et al (2019) Magnolol induces cell death through PI3K/Akt-mediated epigenetic modifications boosting treatment of BRAF- and NRAS-mutant melanoma. Cancer Med 8(3):1186–1196. https://doi.org/10.1002/cam4.1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee EF, Harris TJ, Tran S et al (2019) BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death Dis 10(5):342. https://doi.org/10.1038/s41419-019-1568-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chauvistre H, Shannan B, Daignault-Mill SM et al (2022) Persister state-directed transitioning and vulnerability in melanoma. Nat Commun 13(1):3055. https://doi.org/10.1038/s41467-022-30641-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ravindran Menon D, Das S, Krepler C et al (2015) A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene 34(34):4448–4459. https://doi.org/10.1038/onc.2014.372

    Article  CAS  PubMed  Google Scholar 

  27. Browning AP, Sharp JA, Murphy RJ et al (2021) Quantitative analysis of tumour spheroid structure. eLife 10:e73020. https://doi.org/10.7554/eLife.73020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murphy RJ, Browning AP, Gunasingh G et al (2022) Designing and interpreting 4D tumour spheroid experiments. Commun Biol 5(1):91. https://doi.org/10.1038/s42003-022-03018-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klowss JJ, Browning AP, Murphy RJ et al (2022) A stochastic mathematical model of 4D tumour spheroids with real-time fluorescent cell cycle labelling. J R Soc Interface 19(189):20210903. https://doi.org/10.1098/rsif.2021.0903

    Article  PubMed  PubMed Central  Google Scholar 

  30. Murphy RJ, Gunasingh G, Haass NK et al (2022) Growth and adaptation mechanisms of tumour spheroids with time-dependent oxygen availability. PLoS Comput Biol. 19(1):e1010833. https://doi.org/10.1371/journal.pcbi.1010833

  31. Haass NK (2015) Dynamic tumor heterogeneity in melanoma therapy: how do we address this in a novel model system? Melanoma Manag 2(2):93–95

    Article  PubMed  PubMed Central  Google Scholar 

  32. Beaumont KA, Anfosso A, Ahmed F et al (2015) Imaging- and flow cytometry-based analysis of cell position and the cell cycle in 3D melanoma spheroids. J Vis Exp 106:e53486. https://doi.org/10.3791/53486

    Article  CAS  Google Scholar 

  33. Sarapata EA, de Pillis LG (2014) A comparison and catalog of intrinsic tumor growth models. Bull Math Biol 76(8):2010–2024. https://doi.org/10.1007/s11538-014-9986-y

    Article  CAS  PubMed  Google Scholar 

  34. Greenspan HP (1972) Models for growth of a solid tumor by diffusion. Stud Appl Math 51(4):317–340

    Article  Google Scholar 

  35. Jin W, Spoerri L, Haass NK et al (2021) Mathematical model of tumour spheroid experiments with real-time cell cycle imaging. Bull Math Biol 83(5):44. https://doi.org/10.1007/s11538-021-00878-4

    Article  CAS  PubMed  Google Scholar 

  36. Murphy RJ, Gunasingh G, Haass NK, Simpson MJ (2023) Formation and growth of co-culture tumour spheroids: new compartment-based mathematical models and experiments. bioRxiv. https://doi.org/10.1101/2022.12.21.521515 (accepted Bull Math Biol)

  37. Araujo RP, McElwain DL (2004) A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol 66(5):1039–1091. https://doi.org/10.1016/j.bulm.2003.11.002

    Article  CAS  PubMed  Google Scholar 

  38. Byrne HM (2010) Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev Cancer 10(3):221–230. https://doi.org/10.1038/nrc2808

    Article  CAS  PubMed  Google Scholar 

  39. Roose T, Chapman SJ, Maini PK (2007) Mathematical models of avascular tumor growth. SIAM Rev 49(2):179–208. https://doi.org/10.1137/S0036144504446291

    Article  Google Scholar 

  40. Smalley KS, Brafford P, Haass NK et al (2005) Up-regulated expression of zonula occludens protein-1 in human melanoma associates with N-cadherin and contributes to invasion and adhesion. Am J Pathol 166(5):1541–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25(11):1463–1465. https://doi.org/10.1093/bioinformatics/btp184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mathworks (2022) Nonlinear regression. https://au.mathworks.com/help/stats/nlinfit.html. Accessed 16-06-22

  43. Flach EH, Rebecca VW, Herlyn M et al (2011) Fibroblasts contribute to melanoma tumor growth and drug resistance. Mol Pharm 8(6):2039–2049. https://doi.org/10.1021/mp200421k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haass NK, Sproesser K, Nguyen TK et al (2008) The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clin Cancer Res 14(1):230–239

    Article  CAS  PubMed  Google Scholar 

  45. Velazquez OC, Snyder R, Liu ZJ et al (2002) Fibroblast-dependent differentiation of human microvascular endothelial cells into capillary-like 3-dimensional networks. FASEB J 16(10):1316–1318

    Article  CAS  PubMed  Google Scholar 

  46. Kirkpatrick ND, Hoying JB, Botting SK et al (2006) In vitro model for endogenous optical signatures of collagen. J Biomed Opt 11(5):054021. https://doi.org/10.1117/1.2360516

    Article  CAS  PubMed  Google Scholar 

  47. Tong PL, Qin J, Cooper CL et al (2013) A quantitative approach to histopathological dissection of elastin-related disorders using multiphoton microscopy. Br J Dermatol 169(4):869–879. https://doi.org/10.1111/bjd.12430

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof Meenhard Herlyn, The Wistar Institute, Philadelphia, PA; Prof Keiran Smalley, Moffitt Cancer Center, Tampa, FL; Prof Wolfgang Weninger & Dr. Ben Roediger, Centenary Institute, Sydney, NSW; Dr. Crystal Tonnessen, Frazer Institute, Brisbane, QLD; and the imaging facilities of the Centenary Institute (Sydney) and the Translational Research Institute (Brisbane) for their contribution to optimizing this protocol over the years. We thank Prof Matthew Simpson, Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, for the fantastic collaboration linking 3D culture model analysis with mathematical modeling. We thank Prof Atsushi Miyawaki, RIKEN, Wako-city, Japan, for providing the FUCCI constructs. N.K.H. is a Cameron fellow of the Melanoma and Skin Cancer Research Institute, Australia. K.A.B. is a fellow of Cancer Institute New South Wales (13/ECF/1-39). The work leading to this protocol was supported by project grants RG 09-08 and RG 13-06 (Cancer Council New South Wales), 570778 and 1051996 (Priority-driven collaborative cancer research scheme/Cancer Australia/Cure Cancer Australia Foundation), 08/RFG/1-27 (Cancer Institute New South Wales), APP1003637, and APP1084893 (National Health and Medical Research Council).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolas K. Haass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Spoerri, L. et al. (2024). Real-Time Cell Cycle Imaging in a 3D Cell Culture Model of Melanoma, Quantitative Analysis, Optical Clearing, and Mathematical Modeling. In: Sumbalova Koledova, Z. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 2764. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3674-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3674-9_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3673-2

  • Online ISBN: 978-1-0716-3674-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics