Skip to main content

Embedded 3D Bioprinting for Engineering Miniaturized In Vitro Tumor Models

  • Protocol
  • First Online:
3D Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2764))

  • 382 Accesses

Abstract

Embedded extrusion 3D bioprinting is a rapidly emerging additive manufacturing methodology that provides a precise spatial deposition of synthetic or natural-origin low-viscosity bioinks during the extrusion printing process. Such a strategy has to date unlocked the freeform extrusion biofabrication of complex micro-to-macro-scale living architectures for numerous applications, including tissue engineering and in vitro disease modeling. In this chapter, we describe a suspension bioprinting methodology leveraging a continuous viscoelastic biopolymer supporting bath functionalized with divalent calcium cations to enable a rapid processing of user-defined bioinks toward architecturally complex 3D in vitro tumor models. This highly simple and cost-effective viscoelastic supporting bath enables a full freeform biofabrication of cell-laden 3D tumor-mimetic architectures that exhibit structural stability in culture post-printing. The cytocompatibility of the supporting bath, its ease of removal from biofabricated living constructs, and its adaptability for processing different ECM-mimetic bioinks open avenues for multi-scale fabrication of numerous types of physiomimetic 3D tumor models for preclinical screening of candidate therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levato R, Jungst T, Scheuring RG et al (2020) From shape to function: the next step in bioprinting. Adv Mater 32:1906423. https://doi.org/10.1002/adma.201906423

    Article  CAS  Google Scholar 

  2. Ashammakhi N, Ahadian S, Xu C et al (2019) Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio 1:100008. https://doi.org/10.1016/j.mtbio.2019.100008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patrício SG, Sousa LR, Correia TR et al (2020) Freeform 3D printing using a continuous viscoelastic supporting matrix. Biofabrication 12:035017. https://doi.org/10.1088/1758-5090/ab8bc3

    Article  CAS  PubMed  Google Scholar 

  4. McCormack A, Highley CB, Leslie NR et al (2020) Melchels, 3D printing in suspension baths: keeping the promises of bioprinting afloat. Trends Biotechnol 38:584–593. https://doi.org/10.1016/j.tibtech.2019.12.020

    Article  CAS  PubMed  Google Scholar 

  5. Cooke ME, Rosenzweig DH (2021) The rheology of direct and suspended extrusion bioprinting. APL Bioeng 5:1–20. https://doi.org/10.1063/5.0031475

    Article  Google Scholar 

  6. Corbett DC, Olszewski E, Stevens K (2019) A FRESH take on resolution in 3D bioprinting. Trends Biotechnol 37:1153–1155. https://doi.org/10.1016/j.tibtech.2019.09.003

    Article  CAS  PubMed  Google Scholar 

  7. Daly AC, Davidson MD, Burdick JA (2021) 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun 12:1–13. https://doi.org/10.1038/s41467-021-21029-2

    Article  CAS  Google Scholar 

  8. Cheng W, Zhang J, Liu J et al (2020) Granular hydrogels for 3D bioprinting applications. Viewpoints 1:20200060. https://doi.org/10.1002/viw.20200060

    Article  Google Scholar 

  9. Loebel C, Rodell CB, Chen MH et al (2017) Shear-thinning and self-healing hydrogels as injectable therapeutics and for 3D-printing. Nat Protoc 12:1521–1541. https://doi.org/10.1038/nprot.2017.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moxon SR, Cooke ME, Cox SC et al (2017) Suspended manufacture of biological structures. Adv Mater 29:1605594. https://doi.org/10.1002/adma.201605594

    Article  CAS  Google Scholar 

  11. Compaan AM, Song K, Huang Y (2019) Gellan fluid gel as a versatile support bath material for fluid extrusion bioprinting. ACS Appl Mater Interfaces 11:5714–5726. https://doi.org/10.1021/acsami.8b13792

    Article  CAS  PubMed  Google Scholar 

  12. Skylar-Scott MA, Uzel SGM, Nam LL et al (2019) Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci Adv 5:eaaw2459. https://doi.org/10.1126/sciadv.aaw2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hinton TJ, Jallerat Q, Palchesko RN et al (2015) Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv 1:e1500758. https://doi.org/10.1126/sciadv.1500758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramesh S, Harrysson OLA, Rao PK et al (2021) Extrusion bioprinting: recent progress, challenges, and future opportunities. Bioprinting 1:e00116. https://doi.org/10.1016/j.bprint.2020.e00116

    Article  Google Scholar 

  15. Jeong HJ, Nam H, Jang J et al (2020) 3D bioprinting strategies for the regeneration of functional tubular tissues and organs. Bioengineering 7:1–24. https://doi.org/10.3390/bioengineering7020032

    Article  CAS  Google Scholar 

  16. Chen S, Tan WS, Bin Juhari MA et al (2020) Freeform 3D printing of soft matters: recent advances in technology for biomedical engineering. Biomed Eng Lett 10:453–479. https://doi.org/10.1007/s13534-020-00171-8

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ouyang L, Armstrong JPK, Lin Y et al (2020) Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Sci Adv 6:eabc5529. https://doi.org/10.1126/sciadv.abc5529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Monteiro MV, Gaspar VM, Ferreira LP et al (2020) Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response. Biomater Sci 8:1855–1864. https://doi.org/10.1039/C9BM02075F

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES. This work was also supported by the Programa Operacional Competitividade e Internacionalização (POCI), in the component FEDER, and by national funds (OE) through FCT/MCTES, in the scope of project PANGEIA (PTDC/BTM-SAL/30503/2017). The authors acknowledge the financial support by the Portuguese Foundation for Science and Technology (FCT) through a Doctoral Grant (DFA/BD/7692/2020, M.V.M.) and through a Junior Researcher contract (CEEC/1048/2019, V.M.G.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vítor M. Gaspar or João F. Mano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Monteiro, M.V., Rocha, M., Gaspar, V.M., Mano, J.F. (2024). Embedded 3D Bioprinting for Engineering Miniaturized In Vitro Tumor Models. In: Sumbalova Koledova, Z. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 2764. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3674-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3674-9_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3673-2

  • Online ISBN: 978-1-0716-3674-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics