Skip to main content

Mechanical Characterization of Mucus on Intestinal Tissues by Atomic Force Microscopy

  • Protocol
  • First Online:
Mucins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2763))

  • 278 Accesses

Abstract

Mucus is part of the innate immune system that defends the mucosa against microbiota and other infectious threats. The mechanical characteristics of mucus, such as viscosity, elasticity, and lubricity, are critically involved in its barrier function. However, assessing the mechanical properties of mucus remains challenging because of technical limitations. Thus, a new approach that characterizes the mechanical properties of mucus on colonic tissues needs to be developed. Here, we describe a novel strategy to characterize the ex vivo mechanical properties of mucus on colonic tissues using atomic force microscopy. This description includes the preparation of the mouse colon sample, AFM calibration, and determining the elasticity (Young’s modulus, E [kPa]) of the mucus layer in the colon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlson TL, Lock JY, Carrier RL (2018) Engineering the mucus barrier. Annu Rev Biomed Eng 20:197–220. https://doi.org/10.1146/annurev-bioeng-062117-121156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Johansson ME, Phillipson M, Petersson J et al (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105(39):15064–15069. https://doi.org/10.1073/pnas.0803124105

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hansson GC (2012) Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol 15(1):57–62. https://doi.org/10.1016/j.mib.2011.11.002

    Article  PubMed  CAS  Google Scholar 

  4. Wagner CE, Wheeler KM, Ribbeck K (2018) Mucins and their role in shaping the functions of mucus barriers. Annu Rev Cell Dev Biol 34:189–215. https://doi.org/10.1146/annurev-cellbio-100617-062818

    Article  PubMed  CAS  Google Scholar 

  5. Kodera N, Noshiro D, Dora SK et al (2021) Structural and dynamics analysis of intrinsically disordered proteins by high-speed atomic force microscopy. Nat Nanotechnol 16(2):181–189

    Article  PubMed  CAS  Google Scholar 

  6. Fujioka Y, Alam JM, Noshiro D et al (2020) Phase separation organizes the site of autophagosome formation. Nature 578(7794):301–305

    Article  PubMed  CAS  Google Scholar 

  7. Hertz H (1882) On contact between elastic bodies. J Reine Angew Math 92:156–171

    Article  Google Scholar 

  8. Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57

    Article  Google Scholar 

  9. Cross SE, Jin Y-S, Rao J et al (2009) Applicability of AFM in cancer detection. Nat Nanotechnol 4:72–73

    Article  CAS  Google Scholar 

  10. Plodinec M, Loparic M, Monnier CA et al (2012) The nanomechanical signature of breast cancer. Nat Nanotechnol 7(11):757–765

    Article  PubMed  CAS  Google Scholar 

  11. Li M, Dang D, Liu L et al (2017) Atomic force microscopy in characterizing cell mechanics for biomedical applications: a review. IEEE Trans Nanobioscience 16(6):523–540. https://doi.org/10.1109/TNB.2017.2714462

    Article  PubMed  Google Scholar 

  12. Efremov YM, Okajima T, Raman A (2020) Measuring viscoelasticity of soft biological samples using atomic force microscopy. Soft Matter 16(1):64–81. https://doi.org/10.1039/c9sm01020c

    Article  PubMed  CAS  Google Scholar 

  13. Ouchi R, Togo S, Kimura M et al (2019) Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab 30(2):374–384.e376. https://doi.org/10.1016/j.cmet.2019.05.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Deng X, Xiong F, Li X et al (2018) Application of atomic force microscopy in cancer research. J Nanobiotechnol 16(1):102. https://doi.org/10.1186/s12951-018-0428-0

    Article  CAS  Google Scholar 

  15. Dulińska I, Targosz M, Strojny W et al (2006) Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy. J Biochem Biophys Methods 66(1–3):1–11

    Article  PubMed  Google Scholar 

  16. Ouchi R, Togo S, Kimura M et al (2019) Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab 30(2):374–384.e376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Norman MDA, Ferreira SA, Jowett GM et al (2021) Measuring the elastic modulus of soft culture surfaces and three-dimensional hydrogels using atomic force microscopy. Nat Protoc 16(5):2418–2449

    Article  PubMed  CAS  Google Scholar 

  18. Chevalier NR, Gazguez E, Dufour S et al (2016) Measuring the micromechanical properties of embryonic tissues. Methods 94:120–128

    Article  PubMed  CAS  Google Scholar 

  19. Sotres J, Jankovskaja S, Wannerberger K et al (2017) Ex-vivo force spectroscopy of intestinal mucosa reveals the mechanical properties of mucus blankets. Sci Rep 7(1):7270. https://doi.org/10.1038/s41598-017-07552-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Taniguchi M, Okumura R, Matsuzaki T et al (2023) Sialylation shapes mucus architecture inhibiting bacterial invasion in the colon. Mucosal Immunol 16:624. https://doi.org/10.1016/j.mucimm.2023.06.004

    Article  PubMed  CAS  Google Scholar 

  21. Sotres J, Jankovskaja S, Wannerberger K et al (2017) Ex-vivo force spectroscopy of intestinal mucosa reveals the mechanical properties of mucus blankets. Sci Rep 7(1):7270

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kobayashi N, Togo S, Matsuzaki T et al (2020) Stiffness distribution analysis in indentation depth direction reveals clear mechanical features of cells and organoids by using AFM. Appl Phys Express 13(9):097001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (JP18K15187 [RO], JP21KK0195 [TM and HYY], J21H03790 [TM]) and the Japan Science and Technology Agency, FOREST Program (JPMJFR205N [TM]). TM acknowledges the Nakatani Foundation for Advancement of Measuring Technologies in Biomedical Engineering and the Uehara Memorial Foundation for research incentive grants. We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryu Okumura or Takahisa Matsuzaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Horikiri, M., Taniguchi, M., Yoshikawa, H.Y., Okumura, R., Matsuzaki, T. (2024). Mechanical Characterization of Mucus on Intestinal Tissues by Atomic Force Microscopy. In: Kameyama, A. (eds) Mucins. Methods in Molecular Biology, vol 2763. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3670-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3670-1_35

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3669-5

  • Online ISBN: 978-1-0716-3670-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics