Skip to main content

Fabrication and Characterization of Mucin Nanoparticles for Drug Delivery Applications

  • Protocol
  • First Online:
Mucins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2763))

  • 282 Accesses

Abstract

Mucin glycoproteins are ideal biomacromolecules for drug delivery applications since they naturally offer a plethora of different functional groups that can engage in specific and unspecific binding interactions with cargo molecules. However, to fabricate drug carrier objects from mucins, suitable stabilization mechanisms have to be implemented into the nanoparticle preparation procedure that allow for drug release profiles that match the requirements of the selected cargo molecule and its particular mode of action. Here, we describe two different methods to prepare crosslinked mucin nanoparticles that can release their cargo either on-demand or in a sustained manner. This method chapter includes a description of the preparation and characterization of mucin nanoparticles (stabilized either with synthetic DNA strands or with covalent crosslinks generated by free radical polymerization), as well as protocols to quantify the release of a model drug from those nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidson HJ, Kuonen VJ (2004) The tear film and ocular mucins. Vet Ophthalmol 7(2):71–77

    Article  PubMed  PubMed Central  Google Scholar 

  2. Johansson ME, Sjövall H, Hansson GC (2013) The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 10(6):352–361

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lagow E, DeSouza MM, Carson DD (1999) Mammalian reproductive tract mucins. Hum Reprod Update 5(4):280–292

    Article  PubMed  Google Scholar 

  4. Bansil R, Turner BS (2006) Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci 11(2–3):164–170

    Article  Google Scholar 

  5. Linden SK, Sutton P, Karlsson NG et al (2008) Mucins in the mucosal barrier to infection. Mucosal Immunol 1(3):183–197

    Article  PubMed  PubMed Central  Google Scholar 

  6. McGuckin MA, Lindén SK, Sutton P et al (2011) Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9(4):265–278

    Article  PubMed  Google Scholar 

  7. Ma L, Gaisinskaya-Kipnis A, Kampf N et al (2015) Origins of hydration lubrication. Nat Commun 6:6060

    Article  PubMed  Google Scholar 

  8. Käsdorf BT, Weber F, Petrou G et al (2017) Mucin-inspired lubrication on hydrophobic surfaces. Biomacromolecules 18(8):2454–2462

    Article  PubMed  Google Scholar 

  9. Marczynski M, Jiang K, Blakeley M et al (2021) Structural alterations of mucins are associated with losses in functionality. Biomacromolecules 22(4):1600–1613

    Article  PubMed  Google Scholar 

  10. Lieleg O, Vladescu I, Ribbeck K (2010) Characterization of particle translocation through mucin hydrogels. Biophys J 98(9):1782–1789

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yakubov GE, McColl J, Bongaerts JH et al (2009) Viscous boundary lubrication of hydrophobic surfaces by mucin. Langmuir 25(4):2313–2321

    Article  PubMed  Google Scholar 

  12. Song J, Winkeljann B, Lieleg O (2019) The lubricity of mucin solutions is robust toward changes in physiological conditions. ACS Appl Bio Mater 2(8):3448–3457

    Article  PubMed  Google Scholar 

  13. Lieleg O, Lieleg C, Bloom J et al (2012) Mucin biopolymers as broad-spectrum antiviral agents. Biomacromolecules 13(6):1724–1732

    Article  PubMed  PubMed Central  Google Scholar 

  14. Caldara M, Friedlander RS, Kavanaugh NL et al (2012) Mucin biopolymers prevent bacterial aggregation by retaining cells in the free-swimming state. Curr Biol 22(24):2325–2330

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rickert CA, Lutz TM, Marczynski M et al (2020) Several sterilization strategies maintain the functionality of mucin glycoproteins. Macromol Biosci 20(7):e2000090

    Article  PubMed  Google Scholar 

  16. Rickert CA, Bauer MG, Hoffmeister JC et al (2022) Effects of sterilization methods on the integrity and functionality of covalent mucin coatings on medical devices. Adv Mater Interfaces 9(3):2101716

    Article  Google Scholar 

  17. Rickert CA, Wittmann B, Fromme R et al (2020) Highly transparent covalent mucin coatings improve the wettability and tribology of hydrophobic contact lenses. ACS Appl Mater Interfaces 12(25):28024–28033

    Article  PubMed  Google Scholar 

  18. Winkeljann B, Bauer MG, Marczynski M et al (2020) Covalent mucin coatings form stable anti-biofouling layers on a broad range of medical polymer materials. Adv Mater Interfaces 7(4):1902069

    Article  Google Scholar 

  19. Song J, Lutz TM, Lang N et al (2021) Bioinspired dopamine/mucin coatings provide lubricity, wear protection, and cell-repellent properties for medical applications. Adv Healthc Mater 10(4):2000831

    Article  Google Scholar 

  20. Duffy CV, David L, Crouzier T (2015) Covalently-crosslinked mucin biopolymer hydrogels for sustained drug delivery. Acta Biomater 20:51–59

    Article  PubMed  Google Scholar 

  21. Kimna C, Winkeljann B, Song J et al (2020) Smart biopolymer-based multi-layers enable consecutive drug release events on demand. Adv Mater Interfaces 7(19):2000735

    Article  Google Scholar 

  22. Marczynski M, Kimna C, Lieleg O (2021) Purified mucins in drug delivery research. Adv Drug Deliv Rev 178:113845

    Article  PubMed  Google Scholar 

  23. Yan H, Chircov C, Zhong X et al (2018) Reversible condensation of mucins into nanoparticles. Langmuir 34(45):13615–13625

    Article  PubMed  Google Scholar 

  24. Butnarasu C, Petrini P, Bracotti F et al (2022) Mucosomes: intrinsically mucoadhesive glycosylated mucin nanoparticles as multi-drug delivery platform. Adv Healthc Mater 11(15):e2200340

    Article  PubMed  Google Scholar 

  25. Lutz TM, Kimna C, Lieleg O (2022) A pH-stable, mucin based nanoparticle system for the co-delivery of hydrophobic and hydrophilic drugs. Int J Biol Macromol 215:102–112

    Article  PubMed  Google Scholar 

  26. Kimna C, Lutz TM, Yan H et al (2020) DNA strands trigger the intracellular release of drugs from mucin-based nanocarriers. ACS Nano 15(2):2350–2362

    Article  PubMed  Google Scholar 

  27. Fukui Y, Fukuda M, Fujimoto K (2018) Generation of mucin gel particles with self-degradable and-releasable properties. J Mater Chem B 6(5):781–788

    Article  PubMed  Google Scholar 

  28. Marczynski M, Rickert CA, Fuhrmann T et al (2022) An improved, filtration-based process to purify functional mucins from mucosal tissues with high yields. Sep Purif Technol 294:121209

    Article  Google Scholar 

  29. Nowald C, Käsdorf B, Lieleg O (2017) Controlled nanoparticle release from a hydrogel by DNA-mediated particle disaggregation. J Control Release 246:71–78

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the Federal Ministry of Education and Research (BMBF) and the Free State of Bavaria under the Excellence Strategy of the Federal Government and the Länder through the ONE MUNICH Project Munich Multiscale Biofabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Lieleg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kimna, C., Lutz, T.M., Lieleg, O. (2024). Fabrication and Characterization of Mucin Nanoparticles for Drug Delivery Applications. In: Kameyama, A. (eds) Mucins. Methods in Molecular Biology, vol 2763. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3670-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3670-1_33

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3669-5

  • Online ISBN: 978-1-0716-3670-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics