Skip to main content

In Vitro Cytotoxicity Testing of Food Packaging

  • Chapter
  • First Online:
Food Packaging Materials

Abstract

Colorimetric assays with tetrazolium salts allow rapid evaluation of cytotoxicity endpoints. These assays are based on the ability of viable cells to convert tetrazolium salts into formazan products through the succinate dehydrogenase system in the mitochondrial respiratory chain. In the presence of NADH/NADPH, these salts are reduced to formazan products characterized by an intense and distinct color that depends on the original tetrazolium salt used as the substrate for the reaction. Only viable cells, which contain intact plasma and mitochondrial membranes, will have active dehydrogenase. Agents that break the membranes and interfere with the respiratory chain will deactivate the enzyme and consequently the formation of formazan products. Thus, the amount of formazan product can be correlated with the number of viable cells after exposure to the tested substance. In this chapter, the most common colorimetric cell viability assays with tetrazolium salts are present to assess the cytotoxicity of food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Groh KJ, Muncke J (2017) In vitro toxicity testing of food contact materials: state-of-the-art and future challenges. Compr Rev Food Sci F 16:1123–1150. https://doi.org/10.1111/1541-4337.12280

    Article  Google Scholar 

  2. Stockert JC, Horobin RW, Colombo LL, Blázquez-Castro A (2018) Tetrazolium salts and formazan products in cell biology: viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem 120:159–167. https://doi.org/10.1016/j.acthis.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  3. Adan A, Kiraz Y, Baran Y (2016) Cell proliferation and cytotoxicity assays. Curr Pharm Biotechnol 17:1213–1221. https://doi.org/10.2174/1389201017666160808160513

    Article  CAS  PubMed  Google Scholar 

  4. Shokrzadeh M, Modanloo M (2017) An overview of the most common methods for assessing cell viability. J Res Med Dent Sci 5:33–41. https://doi.org/10.5455/jrmds.2017526

    Article  Google Scholar 

  5. Liu X, Rodeheaver DP, White JC et al (2018) A comparison of in vitro cytotoxicity assays in medical device regulatory studies. Regul Toxicol Pharmacol 97:24–32. https://doi.org/10.1016/j.yrtph.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  6. Menyhárt O, Harami-Papp H, Sukumar S et al (2016) Guidelines for the selection of functional assays to evaluate the hallmarks of cancer. Biochim Biophys Acta 1866:300–319. https://doi.org/10.1016/j.bbcan.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  7. Präbst K, Engelhardt H, Ringgeler S, Hübner H (2017) Basic colorimetric proliferation assays: MTT, WST, and Resazurin. Methods Mol Biol 1601:1–17. https://doi.org/10.1007/978-1-4939-6960-9_1

    Article  CAS  PubMed  Google Scholar 

  8. Riss TL, Moravec RA, Niles AL et al (2016) Cell viability assays. In: Assay guidance manual [Internet]. Eli Lilly & Company and the National Center for Advancing Translational Sciences

    Google Scholar 

  9. van Meerloo J, Kaspers GJ, Cloos J (2011) Cell sensitivity assays: the MTT assay. Methods Mol Biol 731:237–245. https://doi.org/10.1007/978-1-61779-080-5_20

    Article  CAS  PubMed  Google Scholar 

  10. Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152. https://doi.org/10.1016/s1387-2656(05)11004-7

    Article  CAS  PubMed  Google Scholar 

  11. Lü L, Zhang L, Wai MS et al (2012) Exocytosis of MTT formazan could exacerbate cell injury. Toxicol In Vitro 26:636–644. https://doi.org/10.1016/j.tiv.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  12. Abbott A (2003) Biology's new dimension. Nature 424:870–872. https://doi.org/10.1038/424870a

    Article  CAS  PubMed  Google Scholar 

  13. Hall MD, Martin C, Ferguson DJ et al (2004) Comparative efficacy of novel platinum(IV) compounds with established chemotherapeutic drugs in solid tumour models. Biochem Pharmacol 67:17–30. https://doi.org/10.1016/j.bcp.2003.07.016

    Article  CAS  PubMed  Google Scholar 

  14. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11:393–410. https://doi.org/10.1038/nrc3064

    Article  CAS  PubMed  Google Scholar 

  15. Kamiloglu S, Sari G, Ozdal T, Capanoglu E (2020) Guidelines for cell viability assays. Food Front 1:332–349. https://doi.org/10.1002/fft2.44

    Article  Google Scholar 

  16. Dong G, Pan W, Zheng T et al (2006) Colorimetric assay to determine in vitro antibacterial activity against clinical isolates: enhanced activity in damaged Chinese masson pine needles. J Integr Plant Biol 48:1034–1046. https://doi.org/10.1111/j.1744-7909.2006.00310.x

    Article  Google Scholar 

  17. ISO 10993-1:2020 (2020) Part 1: evaluation and testing within a risk management process. In: Biological evaluation of medical devices. International Organization for Standardization ISO, Geneva

    Google Scholar 

  18. ISO 10993-5:2020 (2020) Part 5: tests for in vitro cytotoxicity. In: Biological evaluation of medical devices. International Organization for Standardization ISO, Geneva

    Google Scholar 

  19. ISO 10993-12:2020 (2020) Part 12: sample preparation and reference materials. In: Biological evaluation of medical devices. International Organization for Standardization ISO, Geneva

    Google Scholar 

  20. OECD (2016) Test No. 487: in vitro mammalian cell micronucleus test, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264264861-en

    Book  Google Scholar 

Download references

Acknowledgments

A.B. Ribeiro was the recipient of a M.Sc. fellowship from the São Paulo Research Foundation (FAPESP, Brazil; grant # 2018/25770-7). D.C. Tavares is grateful to the National Council for Scientific and Technological Development (CNPq, Brazil) for the fellowship granted. H.S. Barud thanks CNPq (grant # 407822/2018-6; INCT-INFO), FAPESP (grants # 2018/25512-8 and 2013/07793-6), and TA Instruments Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise C. Tavares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribeiro, A.B., Silva, J.G.F., Trevizan, L.N.F., Barud, H.S., Resende, F.A., Tavares, D.C. (2024). In Vitro Cytotoxicity Testing of Food Packaging. In: Otoni, C. (eds) Food Packaging Materials. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3613-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3613-8_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3612-1

  • Online ISBN: 978-1-0716-3613-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics