Skip to main content

Biodegradability of Polymers by Relatively Low-Cost and Readily Available Nonautomated Respirometry

  • Chapter
  • First Online:
Food Packaging Materials

Part of the book series: Methods and Protocols in Food Science ((MPFS))

  • 161 Accesses

Abstract

Humanity is currently consuming natural resources 1.75 times faster than the planet can regenerate in a year, so the regeneration of these natural resources has become an issue of pressing concern. New drivers have pointed to actions that minimize future impacts, which include reducing plastic waste in the environment, recycling, and the use of biodegradable polymers. The definition and determination of biodegradability of polymers has been a topic of discussion in the scientific community, mainly related to the criteria used to define biodegradability. Academic studies have shown excellent results on polymer biodegradation tests with automated respirometry methods; however, these tests are relatively expensive and may not be readily available. This protocol presents an alternative to automated respirometry (procedure and monitoring), detailing the procedure of a polymer biodegradation test with nonautomated respirometry and monitored by titrimetry. The protocol is based on the international standards ASTM D5338-15, ASTM D5988-18, ASTM D6400-19, ISO 14855-1:2012, and ISO 17556:2019. Proper execution of the protocol will guarantee the correct performance of respirometric polymer biodegradation tests, providing reproducible and accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zumstein MT, Narayan R, Kohler HPE et al (2019) Dos and do nots when assessing the biodegradation of plastics. Environ Sci Technol 53:9967–9969. https://doi.org/10.1021/acs.est.9b04513

    Article  CAS  PubMed  Google Scholar 

  2. Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536. https://doi.org/10.1016/j.wasman.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  3. Lucas N, Bienaime C, Belloy C et al (2008) Polymer biodegradation: mechanisms and estimation techniques - a review. Chemosphere 73:429–442. https://doi.org/10.1016/j.chemosphere.2008.06.064

    Article  CAS  PubMed  Google Scholar 

  4. Vert M, Doi Y, Hellwich K-H et al (2012) Terminology for biorelated polymers and applications (IUPAC recommendations 2012). Pure Appl Chem 84:377–410. https://doi.org/10.1351/pac-rec-10-12-04

    Article  CAS  Google Scholar 

  5. Laycock B, Nikolić M, Colwell JM et al (2017) Lifetime prediction of biodegradable polymers. Prog Polym Sci 71:144–189. https://doi.org/10.1016/j.progpolymsci.2017.02.004

    Article  CAS  Google Scholar 

  6. Bastioli C (ed) (2005) Handbook of biodegradable polymers. Smithers Rapra Press, Shrewsbury

    Google Scholar 

  7. Nikolic MS, Djonlagic J (2001) Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym Degrad Stab 74:263–270. https://doi.org/10.1016/S0141-3910(01)00156-2

    Article  CAS  Google Scholar 

  8. Haider TP, Völker C, Kramm J et al (2019) Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chemie - Int Ed 58:50–62. https://doi.org/10.1002/anie.201805766

    Article  CAS  Google Scholar 

  9. Bonilla J, Paiano RB, Lourenço RV et al (2020) Biodegradability in aquatic system of thin materials based on chitosan, PBAT and HDPE polymers: Respirometric and physical-chemical analysis. Int J Biol Macromol 164:1399–1412. https://doi.org/10.1016/j.ijbiomac.2020.07.309

    Article  CAS  PubMed  Google Scholar 

  10. Banerjee A, Chatterjee K, Madras G (2014) Enzymatic degradation of polymers: a brief review. Mater Sci Technol (United Kingdom) 30:567–573. https://doi.org/10.1179/1743284713Y.0000000503

    Article  CAS  Google Scholar 

  11. Chamas A, Moon H, Zheng J et al (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8:3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635

    Article  CAS  Google Scholar 

  12. Castro-Aguirre E, Auras R, Selke S et al (2017) Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polym Degrad Stab 137:251–271. https://doi.org/10.1016/j.polymdegradstab.2017.01.017

    Article  CAS  Google Scholar 

  13. Kliem S, Kreutzbruck M, Bonten C (2020) Review on the biological degradation of polymers in various environments. Materials (Basel) 13:4586–4604

    Article  CAS  PubMed  Google Scholar 

  14. Way C, Wu DY, Dean K, Palombo E (2010) Design considerations for high-temperature respirometric biodegradation of polymers in compost. Polym Test 29:147–157. https://doi.org/10.1016/j.polymertesting.2009.10.004

    Article  CAS  Google Scholar 

  15. Rudnik E (2008) Biodegradability testing of compostable polymer materials. In: Rudnik E (ed) Compostable polymer materials. Elsevier Science, Amsterdam

    Google Scholar 

  16. Funabashi M, Ninomiya F, Kunioka M (2009) Biodegradability evaluation of polymers by ISO 14855-2. Int J Mol Sci 10:3635–3654. https://doi.org/10.3390/ijms10083635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rudnik E, Briassoulis D (2011) Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing. Ind Crop Prod 33:648–658. https://doi.org/10.1016/j.indcrop.2010.12.031

    Article  CAS  Google Scholar 

  18. Kale G, Auras R, Singh SP, Narayan R (2007) Biodegradability of polylactide bottles in real and simulated composting conditions. Polym Test 26:1049–1061. https://doi.org/10.1016/j.polymertesting.2007.07.006

    Article  CAS  Google Scholar 

  19. Cadar O, Paul M, Roman C et al (2012) Biodegradation behaviour of poly(lactic acid) and (lactic acid-ethylene glycol-malonic or succinic acid) copolymers under controlled composting conditions in a laboratory test system. Polym Degrad Stab 97:354–357. https://doi.org/10.1016/j.polymdegradstab.2011.12.006

    Article  CAS  Google Scholar 

  20. Petinakis E, Liu X, Yu L et al (2010) Biodegradation and thermal decomposition of poly(lactic acid)-based materials reinforced by hydrophilic fillers. Polym Degrad Stab 95:1704–1707. https://doi.org/10.1016/j.polymdegradstab.2010.05.027

    Article  CAS  Google Scholar 

  21. Weng YX, Wang XL, Wang YZ (2011) Biodegradation behavior of PHAs with different chemical structures under controlled composting conditions. Polym Test 30:372–380. https://doi.org/10.1016/j.polymertesting.2011.02.001

    Article  CAS  Google Scholar 

  22. Calil MR, Gaboardi F, Guedes CGF, Rosa DS (2006) Comparison of the biodegradation of poly(ε-caprolactone), cellulose acetate and their blends by the Sturm test and selected cultured fungi. Polym Test 25:597–604. https://doi.org/10.1016/j.polymertesting.2006.01.019

    Article  CAS  Google Scholar 

  23. Pradhan R, Reddy M, Diebel W et al (2010) Comparative compostability and biodegradation studies of various components of green composites and their blends in simulated aerobic composting bioreactor. Polycaprolactone Int J Plast Technol 45–50. https://doi.org/10.1007/s12588-010-0009-z

  24. Du YL, Cao Y, Lu F et al (2008) Biodegradation behaviors of thermoplastic starch (TPS) and thermoplastic dialdehyde starch (TPDAS) under controlled composting conditions. Polym Test 27:924–930. https://doi.org/10.1016/j.polymertesting.2008.08.002

    Article  CAS  Google Scholar 

  25. Leejarkpai T, Suwanmanee U, Rudeekit Y, Mungcharoen T (2011) Biodegradable kinetics of plastics under controlled composting conditions. Waste Manag 31:1153–1161. https://doi.org/10.1016/j.wasman.2010.12.011

    Article  CAS  PubMed  Google Scholar 

  26. Brdlík P, Borůvka M, Borůvka B, et al (2021) Biodegradation of poly(lactic acid) biocomposites under controlled composting conditions and freshwater biotope. https://doi.org/10.3390/polym13040594

  27. Luo Y, Lin Z, Guo G Biodegradation assessment of poly (lactic acid) filled with functionalized titania nanoparticles (PLA/TiO 2) under compost conditions. https://doi.org/10.1186/s11671-019-2891-4

  28. Kalita NK, Sarmah A, Bhasney SM et al (2021) Demonstrating an ideal compostable plastic using biodegradability kinetics of poly(lactic acid) (PLA) based green biocomposite films under aerobic composting conditions. Environ Challeng 3:100030. https://doi.org/10.1016/j.envc.2021.100030

    Article  CAS  Google Scholar 

  29. Tate RL (2021) Soil microbiology, 3rd edn. Wiley, New Jersey

    Google Scholar 

  30. Elsas JD, Trevors JT, Rosado AS, Nannipieri P (eds) (2019) Modern soil microbiology, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  31. ASTM (2018) D5988-18: standard test method for determining aerobic biodegradation of plastic materials in soil. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  32. ASTM (2015) D5338-15: standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions, incorporating thermophilic temperatures. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  33. ASTM (2019) D6400-19: standard specification for labeling of plastics designed to be aerobically composted in municipal or industrial facilities. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  34. ISO (2019) 17556:2019: plastics - determination of the ultimate aerobic biodegradability of plastic materials in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved. International Organization for Standardization, Geneve

    Google Scholar 

  35. ISO (2012) 14855-1:2012: plastics - evaluation of the ultimate aerobic biodegradability and disintegration under controlled composting conditions—method by analysis of released carbon dioxide. International Organization for Standardization, Geneve

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvia H. P. Bettini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babetto, A.S., Possari, L.T., Bonse, B.C., Bettini, S.H.P. (2024). Biodegradability of Polymers by Relatively Low-Cost and Readily Available Nonautomated Respirometry. In: Otoni, C. (eds) Food Packaging Materials. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3613-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3613-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3612-1

  • Online ISBN: 978-1-0716-3613-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics