Skip to main content

Flavan-3-ol (Flavanol) Identification and Quantitation by High Performance Liquid Chromatography Coupled with Mass Spectrometry (HPLC-MSn)

  • Chapter
  • First Online:
Basic Protocols in Enology and Winemaking

Abstract

Flavan-3-ols are widely distributed in higher plants, such as grapes, located in the skins and seeds, being transferred to the wine during winemaking. They are responsible for specific sensory properties such as astringency, and bitterness, acting on the stability of the wine color, and taking part in the antioxidant compounds. The interest in identifying flavan-3-ols has grown in the last decades since the development of new instruments allowing a better separation and characterization, both qualitative and quantitative. New isolation, separation, and identification techniques allowed an increase in the phenolic compounds database with new structures, providing a better understanding of the mechanisms involving phenolic metabolism in grapes, wines, and other fruits and vegetables. High-performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) is one of the most relevant and used analytical techniques for the non-volatile and/or thermally unstable compounds determination. This method has shown to be valuable and robust for investigating the polyphenols (flavan-3-ols or proanthocyanidins) in grapes, wines, and derivates, in several domains, such as evaluating the effect of climate, soil, vine management, cultivars, rootstocks, protocols of elaboration, and the quality control. This chapter aims to present variations of LC-MS techniques used to identify these compounds in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vermerris W, Nicholson R (2006) Families of phenolic compounds and means of classification. In: phenolic compound biochemistry. In: Vermerris W, Nicholson R (eds) Phenolic compound biochemistry. Springer, London

    Google Scholar 

  2. Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic 57:257–268

    Article  CAS  Google Scholar 

  3. Pinasseau L, Vallverdu Queralt A, Verbaere A, Roques M, Meudec E, Le Cunff L et al (2017) Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics. Front Plant Sci 8:24

    Article  Google Scholar 

  4. Decendit A, Waffo-Teguo P, Richard T, Krisa S, Vercauteren J, Monti JP et al (2002) Galloylated catechins and stilbene diglucosides in Vitis vinifera cell suspensions cultures. Phytochemistry 60(8):795–798

    Article  CAS  PubMed  Google Scholar 

  5. Mattivi F, Vrhovsek U, Masuero D, Trainotti D (2009) Differences in the amount and structure of extractable skin and seed tannins amongst red grape varieties. Aust J Grape Wine Res 15(1):27–35

    Article  CAS  Google Scholar 

  6. Downey MO, Harvey JS, Robinson SP (2003) Analysis of tannins in seeds and skins of Shiraz grapes throughout berry development. Aust J Grape Wine Res 9:15–27

    Article  CAS  Google Scholar 

  7. Kyraleou M, Kallithraka S, Theodorou N, Teissedre PL, Kotseridis Y, Koundouras S (2017) Changes in tannin composition of Syrah grape skins and seeds during fruit ripening under contrasting water conditions. Molecules 22:1453

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chira K, Schmauch G, Saucier C, Fabre S, Teissedre PL (2009) Grape variety effect on proanthocyanidin composition and sensory perception of skin and seed tannin extracts from Bordeaux wine grapes (cabernet sauvignon and merlot) for two consecutive vintages (2006 and 2007). J Agric Food Chem 57:545–553

    Article  CAS  PubMed  Google Scholar 

  9. Ćurko N, Kovačević Ganić K, Gracin L, Ðapić M, Jourde M, Teissedre PL (2014) Characterization of seed and skin polyphenolic extracts of two red grape cultivars grown in Croatia and their sensory perception in a wine model medium. Food Chem 145:15–22

    Article  PubMed  Google Scholar 

  10. Bordiga M, Travaglia F, Locatelli M, Coisson JD, Arlorio M (2011) Characterization of polymeric skin and seed proanthocyanidins during ripening in six Vitis vinifera L. cv. Food Chem 127:180–187

    Article  CAS  Google Scholar 

  11. Oliveira JB, Egipto R, Laurean O, de Castro R, Pereira G, Ricardo-da-Silva JM (2019) Chemical characteristics of grapes cv. Syrah (Vitis vinifera L.) grown in the tropical semiarid region of Brazil (Pernambuco state): influence of rootstock and harvest season. J Sci Food Agric 99:5050–5063

    Article  PubMed  Google Scholar 

  12. Ma W, Waffo-Teguo P, Jourdes M, Li H, Teissedre PL (2016) Chemical affinity between tannin size and salivary protein binding abilities: implications for wine astringency. PLoS One 11(8):e0161095

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sarneckis CJ, Dambergs RG, Jones P, Mercurio M, Herderich MJ, Smith PA (2006) Quantification of condensed tannins by precipitation with methyl cellulose: development and validation of an optimized tool for grape and wine analysis. Aust J Grape Wine Res 12:39–49

    Article  CAS  Google Scholar 

  14. Sun BS, Pinto T, Leandro MC, Ricardo-Da-Silva JM, Spranger MI (1999) Transfer of catechins and proanthocyanidins from solid parts of the grape cluster into wine. Am J Enol Vitic 50:179–184

    Article  CAS  Google Scholar 

  15. Cozzolino D, Kwiatkowski MJ, Parker M, Cynkar WU, Dambergs RG, Gishen M, Herderich MJ (2004) Prediction of phenolic compounds in red wine fermentations by visible and near infrared spectroscopy. Anal Chim Acta 513:73–80

    Article  CAS  Google Scholar 

  16. Gishen M, Dambergs RG, Cozzolino D (2005) Grape and wine analysis - enhancing the power of spectroscopy with chemometrics. A review of some applications in the Australian wine industry. Aust J Grape Wine Res 11:296–305

    Article  CAS  Google Scholar 

  17. Di Egidio V, Sinelli N, Giovanelli G, Moles A, Casiraghi E (2010) NIR and MIR spectroscopy as rapid methods to monitor red wine fermentation. Eur Food Res Technol 230:947–955

    Article  CAS  Google Scholar 

  18. Silva MA, Ky I, Jourdes M, Teissedre PL (2012) Rapid and simple method for the quantification of flavan-3-ols in wine. Eur Food Res Technol 234:361–365

    Article  CAS  Google Scholar 

  19. Abad-García B, Berrueta LA, Garmón-Lobato S, Gallo B, Vicente F (2009) A general analytical strategy for the characterization of phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry. J Chromatogr A 1216:5398–5415

    Article  PubMed  Google Scholar 

  20. Berente B, De la Calle GD, Reichenbächer M, Danzer K (2000) Method development for the determination of anthocyanins in red wines by high-performance liquid chromatography and classification of German red wines by means of multivariate statistical methods. J Chromatogr A 871(1–2):95–103

    Article  CAS  PubMed  Google Scholar 

  21. Pérez-Magariño S, Revilla I, González-SanJosé ML, Beltrán S (1999) Various applications of liquid chromatography-mass spectrometry to the analysis of phenolic compounds. J Chromatogr A 847(1–2):75–81

    Article  PubMed  Google Scholar 

  22. Pitt JJ (2009) Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev 30(1):9–34

    Google Scholar 

  23. Salman M, Alghamdi MT, Bazaid SA, Abdel-Hameed ES (2011) Determination of fructose, glucose and sucrose in Taif grape using high performance liquid chromatography and analysis of mineral salts. Arch Appl Sci Res 3(6):488–496

    CAS  Google Scholar 

  24. Chidan Kumar CS, Mythily R, Chandraju S (2012) Advanced chromatographic technique for analysis of sugars extracted from black grape (Vitis vinifera L.) skins. Asian J Chem 24(5):2170–2172

    Google Scholar 

  25. Han J, Lin K, Sequria C, Yang JC, Borchers CH (2016) Quantitation of low molecular weight sugars by chemical derivatization-liquid chromatography multiple reaction monitoring mass spectrometry. Electrophoresis 37:1851–1860

    Article  CAS  PubMed  Google Scholar 

  26. Ehling S, Cole S (2011) Analysis of organic acids in fruit juices by liquid chromatography mass spectrometry: an enhanced tool for authenticity testing. J Agric Food Chem 59(6):2229–2234

    Article  CAS  PubMed  Google Scholar 

  27. Silva FLN, Schmidt EM, Messias CL, Eberlin MN, Sawaya ACHF (2015) Quantitation of organic acids in wine and grapes by direct infusion electrospray ionization mass spectrometry. Anal Methods 7:53–62

    Article  Google Scholar 

  28. Malec PA, Oteri M, Inferrera V, Cacciola F, Mondello L, Kennedy RT (2017) Determination of amines and phenolic acids in wine with benzoyl chloride derivatization and liquid chromatography–mass spectrometry. J Chromatogr A 1523:248–256

    Article  CAS  PubMed  Google Scholar 

  29. Vujovic D, Pejin Jelena B, Djordjevic P, Velickovic M, Tesevic V (2016) Phenolic natural products of the wines obtained from three new merlot clone candidates. Nat Prod Res 8(30):987–990

    Article  Google Scholar 

  30. Li J, Liu X, Han S et al (2012) Analysis of Ochratoxin A in wine by high-resolution UHPLC-MS. Food Anal Methods 5:1506–1513

    Article  Google Scholar 

  31. Souza D, Souza E, Borges EM (2016) Determination of pesticides in grape juices by quechers and liquid chromatography-tandem mass spectrometry. J Braz Chem Soc 27(9):1626–1635

    CAS  Google Scholar 

  32. Mazzuca P, Ferranti P, Picariello G, Chianese L, Addeo F (2005) Mass spectrometry in the study of anthocyanins and their derivatives: differentiation of Vitis vinifera and hybrid grapes by liquid chromatography/electrospray ionization mass spectrometry and tandem mass spectrometry. J Mass Spectrom 40:83–90

    Article  CAS  PubMed  Google Scholar 

  33. Zerbib M, Cazals G, Enjalbal C, Saucier C (2018) Identification and quantification of flavanol glycosides in vitis vinifera grape seeds and skins during ripening. Molecules 23(11):2745

    Article  PubMed  PubMed Central  Google Scholar 

  34. Trikas ED, Papi RM, Kyriakidis DA, Zachariadis GA (2016) A sensitive LC-MS method for anthocyanins and comparison of subproducts and equivalent wine content. Separations 3(18):1–12

    Google Scholar 

  35. Canedo-Reis NAP, Guerra CC, da Silva LF et al (2021) Fast quantitative determination of phenolic compounds in grape juice by UPLC-MS: method validation and characterization of juices produced with different grape varieties. Food Measure 15:1044–1056

    Article  Google Scholar 

  36. Maslamani N, Manandhar E, Geremia DK, Logue BA (2016) ICE concentration linked with extractive stirrer (ICECLES). Anal Chim Acta 941:41–48

    Article  CAS  PubMed  Google Scholar 

  37. Román SM, Rubio-Bretón P, Pérez-Álvarez EP, Garde-Cerdán T (2020) Advancement in analytical techniques for the extraction of grape and wine volatile compounds. Food Res Int 137:109712

    Article  Google Scholar 

  38. Theodoridis G, Gika H, Franceschi P et al (2012) LC-MS based global metabolite profiling of grapes: solvent extraction protocol optimisation. Metabolomics 8:175–185

    Article  CAS  Google Scholar 

  39. García-Estévez I, Alcalde-Eon C, Escribano-Bailón MT (2017) Flavanol quantification of grapes via multiple reaction monitoring mass spectrometry. Application to differentiation among clones of Vitis vinifera L. cv. Rufete grapes. J Agric Food Chem 65(31):6359–6368

    Article  PubMed  Google Scholar 

  40. Ferrer-Gallego R, Quijada-Morín N, Bras NF, Gomes P, de Freitas V, Rivas-Gonzalo JC, Escribano-Bailón MT (2015) Characterization of sensory properties of flavanols a molecular dynamic approach. Chem Senses 40:381–390

    Article  CAS  PubMed  Google Scholar 

  41. Pereira GE, Padhi EMT, Girardello RC, Medina-Plaza C, Tseng D, Bruce RC, Erdmann JN, Kurtural SK, Slupsky CM, Oberholster A (2020) Trunk girdling increased stomatal conductance in cabernet sauvignon grapevines, reduced glutamine, and increased Malvidin-3-glucoside and Quercetin-3-glucoside concentrations in skins and pulp at harvest. Front Plant Sci 11:707

    Article  PubMed  PubMed Central  Google Scholar 

  42. Šuković D, Knežević B, Gašić U, Sredojević M, Ćirić I, Todić S, Mutić J, Tešić Ž (2020) Phenolic profiles of leaves, grapes and wine of grapevine variety Vranac (Vitis vinifera L.) from Montenegro. Foods 9(2):138

    Article  PubMed  PubMed Central  Google Scholar 

  43. Colombo F, Di Lorenzo C, Regazzoni L, Fumagalli M, Sangiovanni E, Sousa LP, Bavaresco L, Tomasi D, Bosso A, Aldini G, Restani P, Dell’Agli M (2019) Phenolic profiles and anti-inflammatory activities of sixteen table grape (Vitis vinifera L.) varieties. Food Funct 10:1797–1807

    Article  CAS  PubMed  Google Scholar 

  44. Pires FB, Dolwitsch CB, Dal Prá V, Faccin H, Monego DL, de Carvalho LM, Viana C, Lameira O, Lima FO, Bressan L, et al (2017) Qualitative and quantitative analysis of the phenolic content of Connarus var. angustifolius, Cecropia obtusa, Cecropia palmata and Mansoa alliacea based on HPLC-DAD and UHPLC-ESI-MS/MS

    Google Scholar 

  45. Núñez V, Gómez-Cordovés C, Bartolomé B, Hong YJ, Mitchell AE (2006) Non-galloylated and galloylated proanthocyanidin oligomers in grape seeds from Vitis vinifera, L. cv. Graciano, Tempranillo and Cabernet Sauvignon. J Sci Food Agric 86(6):915–921

    Article  Google Scholar 

  46. Monagas M, Suárez R, Gómez-Cordovés C, Bartolomé B (2005) Simultaneous determination of nonanthocyanin phenolic compounds in red wines by HPLC-DAD/ESI-MS. Am J Enol Vitic 56:139–147

    Article  CAS  Google Scholar 

  47. Ivanova V, Stefova M, Vojnoski B, Dörnyei A, Márk L, Dimovska V, Stafilov T, Kilár F (2011) Identification of polyphenolic compounds in red and white grape varieties grown in R. Macedonia and changes of their content during ripening. Food Res Int 44(9):2851–2860

    Article  CAS  Google Scholar 

  48. Teixeira N, Azevedo J, Mateus N, de Freitas V (2016) Proanthocyanidin screening by LC-ESI-MS of Portuguese red wines made with teinturier grapes. Food Chem 1(190):300–307

    Article  Google Scholar 

  49. Weilack I, Schmitz C, Harbertson JF, Weber F (2021) Effect of structural transformations on precipitability and polarity of red wine phenolic polymers. Am J Enol Vitic 72:230–239

    Article  CAS  Google Scholar 

  50. Hayasaka Y, Waters EJ, Cheynier V, Herderich MJ, Vidal S (2003) Characterization of proanthocyanidins in grape seeds using electrospray mass spectrometry. Rapid Commun Mass Spectrom 17:9–16

    Article  CAS  PubMed  Google Scholar 

  51. Sun BS, Fernandes TA, Spranger MI (2010) A new class of anthocyanin-procyanidin condensation products detected in red wine by electrospray ionization multi-stage mass spectrometry analysis. Rapid Commun Mass Spectrom 24:254–260

    Article  CAS  PubMed  Google Scholar 

  52. Li L, Sun B (2019) Grape and wine polymeric polyphenols: their importance in enology. Crit Rev Food Sci Nutr 59(4):563–579

    Article  CAS  PubMed  Google Scholar 

  53. De Pascual-Teresa S, Rivas-Gonzalo JC (2003) Application of LC-MS for the identification of polyphenols. In: Santos-Buelga C, Williamson G (eds) Methods in polyphenol analysis. Athenaeum Press

    Google Scholar 

  54. Zubarev RA, Makarov A (2013) Orbitrap is the newest addition to the family of high-resolution mass spectrometry analyzers. With its revolutionarily new, miniature design, Orbitrap combines high speed with excellent quantification properties, ranking favorably in many analytical applications. Anal Chem 85(11):5288–5296

    Article  CAS  PubMed  Google Scholar 

  55. Lanças FM (2009) A Cromatografia Líquida Moderna e a Espectrometria de Massas: finalmente “compatíveis?”. Sci Chromat 2(1):35–61

    Google Scholar 

  56. Sargent M (2013) Guide to achieving reliable quantitative LC-MS measurements. RSC Analytical Methods Committee

    Google Scholar 

  57. Pantelić M, Zagorac DD, Natić M, Gašić U, Jović S, Vujović D, Djordjević JP (2006) Impact of clonal variability on phenolics and radical scavenging activity of grapes and wines: a study on the recently developed merlot and cabernet franc clones (Vitis vinifera L.). PLoS One 11(10):1–15

    Google Scholar 

  58. Serni E, Pedri U, Valls J, Sanoll C, Dordevic N, Überegger E, Robatscher P (2020) Chemical description and organoleptic evaluation of Pinot noir wines from different parts of Italy: a three years investigation. OENO One 54(2):393–410

    CAS  Google Scholar 

  59. Pérez-Navarro J, Izquierdo-Cañas PM, Mena-Morales A, Gascueña JM, Chacón-Vozmediano JL, García-Romero E, Hermosín-Gutiérrez I, Gómez-Alonso S (2019) Phenolic compounds profile of different berry parts from novel Vitis vinifera L. red grape genotypes and Tempranillo using HPLC-DAD-ESI-MS/MS: a varietal differentiation tool. Food Chem 295:350–360

    Article  PubMed  Google Scholar 

  60. Di Lecce G, Arranz S, Jáuregui O, Tresserra-Rimbau A, Quifer-Rada P, Lamuela-Raventós RM (2014) Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry. Food Chem 145:874–882

    Article  PubMed  Google Scholar 

  61. Banc R, Loghin F, Miere D, Ranga F, Socaciu C (2020) Phenolic composition and antioxidant activity of red, rosé and white wines originating from Romanian grape cultivars. Not Bot Horti Agrobot Cluj Napoca 48(2):716–734

    Article  CAS  Google Scholar 

  62. Sen K, Sonmezdag AS (2020) Elucidation of phenolic profiling of cv. Antep Karasi grapes using LC-DAD-ESI-MS/MS. J Raw Mater Process Foods 1:1–6

    Google Scholar 

  63. Savalekar K, Ahammed Shabeer TP, Khan Z et al (2019) Targeted phenolic profiling of sauvignon blanc and shiraz grapes grown in two regions of India by liquid chromatography-tandem mass spectrometry. J Food Sci Technol 56:3300–3312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliane Barreto de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveira, J.B., de Oliveira, C.G.R., Pereira, G.E. (2023). Flavan-3-ol (Flavanol) Identification and Quantitation by High Performance Liquid Chromatography Coupled with Mass Spectrometry (HPLC-MSn). In: Machado de Castilhos, M.B. (eds) Basic Protocols in Enology and Winemaking. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3088-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3088-4_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3087-7

  • Online ISBN: 978-1-0716-3088-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics