Skip to main content

Thermal Energy Storage

  • Reference work entry
  • First Online:
Solar Thermal Energy
  • 1192 Accesses

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC,

Glossary

Latent heat storage :

It is connected with a phase transformation of the storage materials (phase change materials – PCM), typically changing their physical phase from solid to liquid and vice versa. The phase change is always coupled with the absorption or release of heat and occurs at a constant temperature. Thus, the heat added or released cannot be sensed and appears to be latent. Stored energy is equivalent to the heat (enthalpy) for melting and freezing.

Sensible heat storage :

It results in an increase or decrease of the storage material temperature, and the stored energy is proportional to the temperature difference of the used materials.

Thermochemical heat storage :

It is based on reversible thermochemical reactions. The energy is stored in the form of chemical compounds created by an endothermic reaction and it is recovered again by recombining the compounds in an exothermic reaction. The heat stored and released is equivalent to the heat (enthalpy) of reaction.

...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Laing D, Steinmann W-D, Tamme R, Richter C (2006) Solid media thermal storage for parabolic trough power plants. Sol Energy 80:1283–1289

    Article  Google Scholar 

  2. Laing D, Steinmann W-D, Fiß M, Tamme R, Brand T, Bahl C (2008) Solid media thermal storage development and analysis of modular storage operation concepts for parabolic trough power plants. J Sol Energy Eng 130:011006-1/5

    Google Scholar 

  3. Goldstein M (1961) Some physical chemical aspects of heat storage. In: U.N. Conference on new sources of energy, vol 35, Rome, pp 5–7

    Google Scholar 

  4. Telkes M (1974) Solar energy storage. ASHRAE J 16:38–44

    Google Scholar 

  5. Altmann M, Yeh H, Lorsch HG (1973) Conservation and better utilization of electric power by means of thermal energy storage and solar heating. Final summary report, NSF/RANN/SE/G/27976/PR 73/5, University of Pennsylvania

    Google Scholar 

  6. Lorsch HG (1974) Thermal energy storage. Final report, NSF/RANN/74-021C

    Google Scholar 

  7. Carlson B, Stymme H, Wettermark G (1978) Storage of low-temperature heat in salt-hydrate melts – calcium chloride hexahydrate. Swedish Council for Building. Research D 12, Stockholm

    Google Scholar 

  8. Ozawa T et al (1980) Screening of latent heat thermal energy storage materials by using evaluated thermodynamic data. In: 7th Codata international conference, Kyoto

    Google Scholar 

  9. Mar RW (1980) Material science issues encountered during the development of thermochemical concepts. In: Murr LE (ed) Solar materials science. Academic, London

    Google Scholar 

  10. Mehling H, Cabeza LF (2008) Heat and cold storage with PCM – an up to date introduction into basics and applications. Springer, Heidelberg

    Google Scholar 

  11. Bauer T, Laing D, Steinmann WD, Kröner U, Tamme R (2008) Screening of phase change materials for process heat applications in the temperature range 120 to 250 °C. In: Proceedings of Eurosun, Lisbon, 7–10 Oct 2008

    Google Scholar 

  12. Tamme R, Bauer T, Buschle J, Laing D, Müller-Steinhagen H, Steinmann W-D (2008) Latent heat storage above 1208 °C for applications in the industrial process heat sector and solar power generation. Int J Energy Res 32:264–271

    Article  Google Scholar 

  13. Steinmann W-D, Tamme R (2008) Latent heat storage for solar steam systems. J Sol Energy Eng 130:011004-1/5

    Google Scholar 

  14. Wenthworth WE, Chen F (1976) Simple thermal decomposition reactions for storage of solar thermal energy. Sol Energy 18:205–214

    Article  Google Scholar 

  15. Schaube F, Wörner A, Tamme R (2010) High temperature thermo-chemical heat storage for CSP using gas-solid reactions. In: Proceedings of SolarPACES 2010, Perpignan

    Google Scholar 

  16. Wong B, Brown L, Schaube F, Tamme R, Sattler C (2010) Oxide based thermochemical heat storage. In: Proceedings of SolarPACES 2010, Perpignan

    Google Scholar 

  17. Stobbe ER, de Boer BA, Geus JW (1999) The reduction and oxidation behaviour of manganese oxides. Catal Today 47:161–167

    Article  Google Scholar 

  18. Zaki MI et al (1998) Thermochemistry of manganese oxides in reactive gas atmospheres: probing catalytic MnOx compositions in the atmosphere of CO+O2. Thermochim Acta 311:97–103

    Article  Google Scholar 

  19. Lovegrove K et al (2004) Developing ammonia based thermochemical energy storage for dish power plants. Sol Energy 76:331–337

    Article  Google Scholar 

  20. Buck R et al (1994) Development of a volumetric receiver-reactor for solar methane reforming. J Sol Energy Eng 116:73–78

    Google Scholar 

  21. Beckmann G, Gilli PV (1984) Thermal energy storage. Springer, Berlin

    Google Scholar 

  22. Dinter F, Geyer M, Tamme R (1990) Thermal energy storage for commercial applications. Springer, Berlin

    Google Scholar 

  23. Herrmann U, Kearney D (2002) Survey of thermal energy storage for parabolic trough power plants. J Sol Energy Eng 124:145–152

    Article  Google Scholar 

  24. Pacheco JE (2002) Final test and evaluation results from the solar two project. Sandia National Laboratories, SAND2002-0120

    Google Scholar 

  25. Goldstern W (1970) Steam storage installation. Pergamon Press, Oxford

    Google Scholar 

  26. Steinmann WD, Eck M (2006) Buffer storage for direct steam generation. Sol Energy 80:1277–1282, Elsevier

    Article  Google Scholar 

  27. Laing D, Bahl C, Fiß M (2010) Commisioning of a thermal energy storage system for direct steam generation. In: Proceedings. SolarPACES 2010, Perpignan, 21–24 Sept 2010

    Google Scholar 

  28. Kelly B, Kearney D (2006) Thermal storage commercial plant design study for a 2-tank indirect molten salt system. NREL/SR-550-40166

    Google Scholar 

  29. Relloso S, Delgado E (2009) Experience with molten salt thermal storage in a commercial parabolic trough plant. In: Proceedings of the SolarPACES 2009, Berlin

    Google Scholar 

  30. Kolb GJ (2010) Evaluation of annual performance of 2-tank and thermocline thermal storage system for trough plants. In: Proceedings of the SolarPACES 2010, Perpignan

    Google Scholar 

  31. Online newspaper library of Torresol Energy (2011) The innovative Gemasolar plant will be the main project of Torresol Energy at WFES 2011. Press release 11.01.2011. http://www.torresolenergy.com/TORRESOL/Press/torresol-takes-part-wfes-2011. Accessed 14 Mar 2011

  32. Janz GJ et al (1979) Physical properties data compilation relevant to energy storage II. Molten salts: data on single and multi-component salt systems. NSRDS-National Standard Reference Data System

    Google Scholar 

  33. Laing D, Bahl C, Bauer T, Lehmann D, Steinmann W-D (2010) Thermal energy storage for direct steam generation. Sol Energy 85:627–633

    Article  Google Scholar 

  34. Romero M et al (2002) An update on solar central receiver systems, projects, and technologies. ASME J Sol Energy Eng 124:98–108

    Article  Google Scholar 

  35. Pitz-Paal R et al (2005) European concentrated solar thermal road-mapping (ECOSTAR): roadmap document. SES-CT-2003-502578

    Google Scholar 

  36. Price H (2002) Assessment of parabolic trough and power tower solar technology cost and performance forecasts. Sargent & Lundy, NREL/SR-550-34440

    Google Scholar 

  37. Haeger M et al (1994) Phoebus technology program solar air receiver (TSA). Operational experiences with the experimental set-up of a 2.5 MWth volumetric air receiver (TSA) at the plataforma solar de Almería. PSA-TR02/94

    Google Scholar 

  38. Fricker HW (2004) Regenerative thermal storage in atmospheric air system solar power plants. Energy 29:871–881

    Article  Google Scholar 

  39. Zunft S, Hänel M, Krüger M, Dreissigacker V, Göhring F, Wahl E (2010) Jülich solar power tower – experimental evaluation of the storage subsystem and performance calculations. In: Proceedings of the SolarPACES 2010 conference (SolarPACES 2010), Perpignan, 21–24 Sept 2010

    Google Scholar 

  40. Zunft S, Hänel M, Krüger M, Dreißigacker V (2009) High-temperature heat storage for air-cooled solar central receiver plants: a design study. In: Proceedings of the SolarPACES 2009, Berlin, 15–18 Sept 2009

    Google Scholar 

  41. Dreißigacker V, Müller-Steinhagen H, Zunft S (2010) Thermo-mechanical analysis of packed beds for large-scale storage of high temperature heat. Heat Mass Transf 46:1199–1207

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tamme, R., Laing, D., Steinmann, WD., Bauer, T. (2022). Thermal Energy Storage. In: Alexopoulos, S., Kalogirou, S.A. (eds) Solar Thermal Energy. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1422-8_684

Download citation

Publish with us

Policies and ethics