Skip to main content

Bioactive Lipid (BAL)-Based Therapeutic Approach to Cancer That Enhances Antitumor Action and Ameliorates Cytokine Release Syndrome of Immune Checkpoint Inhibitors

  • Chapter
  • First Online:
Molecular Biochemical Aspects of Cancer
  • 404 Accesses

Abstract

It is the aim of cancer therapy to selectively kill tumor cells with few or no side effects. But current therapeutic approaches such as surgery, radiotherapy, and chemotherapy including immune checkpoint inhibitors (ICI) are associated with mild to moderate to severe side effects that are considered to be responsible for significant morbidity and mortality to patients with cancer. The recently discovered and employed ICI therapy though produced significant remission in not more than 20–30% of the patients is capable of inducing severe side effects due to excess production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). It is paradoxical that appropriate amounts of IL-6 and TNF-α are needed to induce apoptosis of tumor cells. Hence, it is important to device newer methods of eliminating rather selectively tumor cells but at the same time prevent or eliminate or reduce cytokine storm-induced side effects. IL-6 and TNF-α induce the release of polyunsaturated fatty acids (PUFAs), especially GLA, DGLA, AA, EPA, and DHA, from the cell membrane phospholipids by activating phospholipases. Previously we and others showed that PUFAs induce apoptosis/ferroptosis/necrosis and other forms of tumor cell death and at the same time are capable of suppressing the release of excess IL-6 and TNF-α. NK cells, TILs (tumor-infiltrating cells), and γδ T cells release toxic granules (also called as cytolytic granules) that contain unsaturated fatty acids. Thus, PUFAs seem to be a universal component of cytolytic granules and are responsible for the cytotoxic action of NK cells, TILs, and γδ T cells especially against tumor cells. Hence, it is hypothesized that a combination of ICI/TILs/NK cells/γδ T cells and PUFAs is likely to form a novel, reliable, and robust method of inducing apoptosis of tumor cells with few side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27:111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karwacz K, Bricogne C, MacDonald D, Arce F, Bennett CL, Collins M, Escors D. PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8+ T cells. EMBO Mol Med. 2011;3:581–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18:e731–41.

    Article  PubMed  Google Scholar 

  5. Noel PJ, Boise LH, Thompson CB. Regulation of T cell activation by CD28 and CTLA4. Adv Exp Med Biol. 1996;406:209–17.

    Article  CAS  PubMed  Google Scholar 

  6. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348:62–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, Postow MA, Wolchok JD. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26:2375–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Merryman RW, Kim HT, Zinzani PL, Carlo-Stella C, Ansell SM, Perales MA, Avigdor A, Halwani AS, Houot R, Marchand T, Dhedin N, Lescaut W, Thiebaut-Bertrand A, François S, Stamatoullas-Bastard A, Rohrlich PS, Labussière Wallet H, Castagna L, Santoro A, Bachanova V, Bresler SC, Srivastava A, Kim H, Pesek E, Chammas M, Reynolds C, Ho VT, Antin JH, Ritz J, Soiffer RJ, Armand P. Safety and efficacy of allogenic hematopoietic stem cell transplant after PD-1 blockade in relapse/refractory lymphoma. Blood. 2017;129:1380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berman D, Parker SM, Siegel J, Chasalow SD, Weber J, Galbraith S, Targan SR, Wang HL. Blockade of cytotoxic T-lymphocyte antigen-4 by ipilimumab results in dysregulation of gastrointestinal immunity in patients with advanced melanoma. Cancer Immun. 2010;10:11.

    PubMed  PubMed Central  Google Scholar 

  11. Davis C, Naci H, Gurpinar E, Poplavska E, Pinto A, Aggarwal A. Availability of evidence of benefits on overall survival and quality of life of cancer drugs approved by European Medicines Agency: retrospective cohort study of drug approvals 2009-13. Br Med J. 2017;359:j4530.

    Article  Google Scholar 

  12. Kim C, Prasad V. Cancer drugs approved on the basis of a surrogate end point and subsequent overall survival: An analysis of 5 5ears of US Food and Drug Administration approvals. JAMA Intern Med. 2015;175:1992–4.

    Article  PubMed  Google Scholar 

  13. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995;270:985–8. https://www.ncbi.nlm.nih.gov/pubmed/?term=Waterhouse%20P%5BAuthor%5D&cauthor=true&cauthor_uid=7481803.

    Article  CAS  PubMed  Google Scholar 

  14. Walunas TL, Bakker CY, Bluestone JA. CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med. 1996;183:2541–50.

    Article  CAS  PubMed  Google Scholar 

  15. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB, Bluestone JA. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1:405–13.

    Article  CAS  PubMed  Google Scholar 

  16. Dranoff G. Immunotherapy at large: Balancing tumor immunity and inflammatory pathology. Nat Med. 2013;19:1100–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182:459–65.

    Article  CAS  PubMed  Google Scholar 

  18. Liossis SN, Sfikakis PP, Tsokos GC. Immune cell signaling aberrations in human lupus. Immunol Res. 1998;18:27–39.

    Article  CAS  PubMed  Google Scholar 

  19. Chang TT, Kuchroo VK, Sharpe AH. Role of the B7-CD28/CTLA-4 pathway in autoimmune disease. Curr Dir Autoimmun. 2002;5:113–30.

    Article  CAS  PubMed  Google Scholar 

  20. Johnson TS, Munn DH. Host indoleamine 2,3-dioxygenase: contribution to systemic acquired tumor tolerance. Immunol Invest. 2012;41:765–97.

    Article  CAS  PubMed  Google Scholar 

  21. Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L, Metz R, et al. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol Immunother. 2014;63:721–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Terness P, Bauer TM, Röse L, Dufter C, Watzlik A, Simon H, Opelz G. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med. 2002;196:447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189:1363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoshida R, Urade Y, Tokuda M, Hayaishi O. Induction of indoleamine 2,3-dioxygenase in mouse lung during virus infection. Proc Natl Acad Sci U S A. 1979;76:4084–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pfefferkorn ER. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci U S A. 1984;81:908–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Theate I, van Baren N, Pilotte L, Moulin P, Larrieu P, Renauld JC, et al. Extensive profiling of the expression of the indoleamine 2,3-dioxygenase 1 protein in normal and tumoral human tissues. Cancer Immunol Res. 2015;3:161–72.

    Article  CAS  PubMed  Google Scholar 

  27. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281:1191–3.

    Article  CAS  PubMed  Google Scholar 

  28. Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, et al. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science. 2005;310:850–5.

    Article  CAS  PubMed  Google Scholar 

  29. Cook CH, Bickerstaff AA, Wang JJ, Nadasdy T, Della Pelle P, Colvin RB, et al. Spontaneous renal allograft acceptance associated with “regulatory” dendritic cells and IDO. J Immunol. 2008;180:3103–12.

    Article  CAS  PubMed  Google Scholar 

  30. Jasperson LK, Bucher C, Panoskaltsis-Mortari A, Taylor PA, Mellor AL, Munn DH, et al. Indoleamine 2,3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality. Blood. 2008;111:3257–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moon YW, Hajjar J, Hwu P, Naing A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. Journal ImmunoTherapy Cancer. 2015;3:51.

    Article  Google Scholar 

  32. Opitz CA, Wick W, Steinman L, Platten M. Tryptophan degradation in autoimmune diseases. Cell Mol Life Sci. 2007;64:2542–63.

    Article  CAS  PubMed  Google Scholar 

  33. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478:197–203.

    Article  CAS  PubMed  Google Scholar 

  34. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010;185:3190–8.

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K, et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci U S A. 2010;107:19961–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Das UN. Is there a role for bioactive lipids in the pathobiology of diabetes mellitus? Front Endocrinol. 2017;8:182.

    Article  Google Scholar 

  37. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reigstad CS, Salmonson CE, Rainey JF III, Szurszewski JH, Linden DR, Sonnenburg JL, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29:1395–403.

    Article  CAS  PubMed  Google Scholar 

  39. Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T, Mizukami H, et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med. 2010;16:804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Georgia S, Bhushan A. Pregnancy hormones boost beta cells via serotonin. Nat Med. 2010;16:756–7.

    Article  CAS  PubMed  Google Scholar 

  41. Stockinger B, Hirota K, Duarte J, Veldhoen M. External influences on the immune system via activation of the aryl hydrocarbon receptor. Semin Immunol. 2011;23:99–105.

    Article  CAS  PubMed  Google Scholar 

  42. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008;453:106–9.

    Article  CAS  PubMed  Google Scholar 

  43. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453:65–71.

    Article  CAS  PubMed  Google Scholar 

  44. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203:2271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ke Y, Liu K, Huang G-Q, Cui Y, Kaplan HJ, Shao H, Sun D. Anti-inflammatory role of IL-17 in experimental autoimmune uveitis. J Immunol. 2009;182:3183–90.

    Article  CAS  PubMed  Google Scholar 

  46. Deby C, Damas J. Proceedings: Influence of tryptophan on the hypotensive effect of arachidonic acid. Arch Int Physiol Biochim. 1974 Oct;82(4):742–4.

    CAS  PubMed  Google Scholar 

  47. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9.

    Article  PubMed  CAS  Google Scholar 

  48. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.

    Article  CAS  PubMed  Google Scholar 

  50. Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S, et al. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma. N Engl J Med. 2018;378:1789–801.

    Article  CAS  PubMed  Google Scholar 

  51. Garber K. A new cancer immunotherapy suffers a setback. Science. 2018;360:588.

    Article  CAS  PubMed  Google Scholar 

  52. Wilkerson J, Fojo T. Progression-free survival is simply a measure of a drug’s effect while administered and is not a surrogate for overall survival. Cancer J. 2009;15:379–85.

    Article  PubMed  Google Scholar 

  53. Zhou Y, Chen C, Zhang X, Fu S, Xue C, Ma Y, Fang W, Yang Y, Hou X, Huang Y, Zhao H, Hong S, Zhang L. Immune-checkpoint inhibitor plus chemotherapy versus conventional chemotherapy for first-line treatment in advanced non-small cell lung carcinoma: a systematic review and meta-analysis. J Immunother Cancer. 2018;6:155.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhuansun Y, Huang F, Du Y, Lin L, Chen R, Li J. Anti-PD-1/PD-L1 antibody versus conventional chemotherapy for previously-treated, advanced non-small-cell lung cancer: a meta-analysis of randomized controlled trials. J Thorac Dis. 2017;9:655–65.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Saxena A, Ramana KV. Impact of immune checkpoint inhibitors in cancer immunotherapy. J Cancer Immunol Ther. 2018;1:4–5.

    Google Scholar 

  56. Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 2016;375:1767–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Webb ES, Liu P, Baleeiro R, Lemoine NR, Yuan M, Wang Y. Immune checkpoint inhibitors in cancer therapy. J Biomed Res. 2018;32:317–26.

    PubMed  Google Scholar 

  59. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M, Kochanek M, Böll B, von Bergwelt-Baildon MS. Cytokine release syndrome. J ImmunoTherapy Cancer. 2018;6:56.

    Article  Google Scholar 

  60. Bajwa R, Cheema A, Khan T, Amirpour A, Paul A, Chaughtai S, Patel S, Patel T, Bramson J, Gupta V, Levitt M, Asif A, Hossain MA. Adverse Effects of Immune Checkpoint Inhibitors (Programmed Death-1 Inhibitors and Cytotoxic T-Lymphocyte-Associated Protein-4 Inhibitors): Results of a Retrospective Study. J Clin Med Res. 2019;11:225–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ferrara R, Mezquita L, Texier M, Lahmar J, Audigier-Valette C, Tessonnier L, et al. Hyperprogressive disease in patients with advanced non–small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol. 4(11):1543–52. https://doi.org/10.1001/jamaoncol.2018.3676.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Comba A, Maestri DM, Berra MA, Garcia CP, Das UN, Eynard AR, Pasqualini ME. Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model. Lipids Health Dis. 2010;9:112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Bégin ME, Ells G, Das UN, Horrobin DF. Differential killing of human carcinoma cells supplemented with n-3 and n-6 polyunsaturated fatty acids. J Natl Cancer Inst. 1986;77:1053–62.

    PubMed  Google Scholar 

  64. Das UN. Effect of γ- Linolenic acid on the transcriptional activity of the HER-2neu (erbB-2) Oncogene. J Natl Cancer Inst. 2006;98:718.

    Article  PubMed  Google Scholar 

  65. Das UN. Tumoricidal action of cis-unsaturated fatty acids and their relationship to free radicals and lipid peroxidation. Cancer Lett. 1991;56:235–43.

    Article  CAS  PubMed  Google Scholar 

  66. Ge H, Kong X, Shi L, Hou L, Liu Z, Li P. Gamma-linolenic acid induces apoptosis and lipid peroxidation in human chronic myelogenous leukemia K562 cells. Cell Biol Int. 2009;33:402–10.

    Article  CAS  PubMed  Google Scholar 

  67. Begin ME, Das UN, Ells G. Cytotoxic effects of essential fatty acids (EFA) in mixed cultures of normal and malignant human cells. Prog Lipid Res. 1986;25:573–6.

    Article  CAS  Google Scholar 

  68. Das UN, Madhavi N. Effect of polyunsaturated fatty acids on drug-sensitive and resistant tumor cells in vitro. Lipids Health Dis. 2011;10:159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gillis RC, Daley BJ, Enderson BL, Karlstad MD. Eicosapentaenoic acid and γ-linolenic acid induce apoptosis in HL-60 cells. J Surg Res. 2002;107:145–53.

    Article  CAS  PubMed  Google Scholar 

  70. Madhavi N, Das UN. Effect of n-6 and n-3 fatty acids on the survival of vincristine sensitive and resistant human cervical carcinoma cells in vitro. Cancer Lett. 1994;84:31–41.

    Article  CAS  PubMed  Google Scholar 

  71. Sailaja P, Mani AM, Naveen KVG, Anasuya DH, Siresha B, Das UN. Effect of polyunsaturated fatty acids and their metabolites on bleomycin-induced cytotoxic action on human neuroblastoma cells in vitro. PLoS One. 2014;9:e114766.

    Article  CAS  Google Scholar 

  72. Sailaja P, Dwarakanath B, Das UN. Arachidonic acid activates extrinsic apoptotic pathway to enhance tumoricidal action of bleomycin against IMR-32 cells. Prostaglandins Leukot Essent Fatty Acids. 2018;132:16–22.

    Article  CAS  Google Scholar 

  73. Anasuya DH, Naidu VGM, Das UN. n-6 and n-3 Fatty acids and their metabolites augment inhibitory action of doxorubicin on the proliferation of human neuroblastoma (IMR-32) cells by enhancing lipid peroxidation and suppressing Ras, Myc, and Fos. Biofactors. 2018;44:387–401.

    Article  CAS  Google Scholar 

  74. D’Eliseo D, Di Renzo L, Santoni A, Velotti F. Docosahexaenoic acid (DHA) promotes immunogenic apoptosis in human multiple myeloma cells, induces autophagy and inhibits STAT3 in both tumor and dendritic cells. Genes Cancer. 2017;8:426–37.

    PubMed  PubMed Central  Google Scholar 

  75. Molinari R, D’Eliseo D, Manzi L, Zolla L, Velotti F, Merendino N. The n-3 polyunsaturated fatty acid docosahexaenoic acid induces immunogenic cell death in human cancer cell lines via pre-apoptotic calreticulin exposure. Cancer Immunol Immunother. 2011;60:1503–7.

    Article  CAS  PubMed  Google Scholar 

  76. Pizato N, Luzete BC, Kiffer LFMV, Corrêa LH, de Oliveira SI, Assumpção JAF, Ito MK, Magalhães KG. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep. 2018;8:1952.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Das M, Das S. Identification of cytotoxic mediators and their putative role in the signaling pathways during docosahexaenoic acid (DHA)-induced apoptosis of cancer cells. Apoptosis. 2016;21:1408–21.

    Article  CAS  PubMed  Google Scholar 

  78. Kang KS, Wang P, Yamabe N, Fukui M, Jay T, Zhu BT. Docosahexaenoic acid induces apoptosis in MCF-7 cells in vitro and in vivo via reactive oxygen species formation and caspase 8 activation. PLoS One. 2010;5:e10296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Gleissman H, Yang R, Martinod K, Lindskog M, Serhan CN, Johnsen JI, Kogner P. Docosahexaenoic acid metabolome in neural tumors: identification of cytotoxic intermediates. FASEB J. 2010;24:906–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Das UN. Essential fatty acids enhance free radical generation and lipid peroxidation to induce apoptosis of tumor cells. Clin Lipidol. 2011;6:463–89.

    Article  CAS  Google Scholar 

  81. Bell HS, Wharton SB, Leaver HA, Whittle IR. Effects of N-6 essential fatty acids on glioma invasion and growth: experimental studies with glioma spheroids in collagen gels. J Neurosurg. 1999;91:989–96.

    Article  CAS  PubMed  Google Scholar 

  82. Antal O, Péter M, Hackler L Jr, Mán I, Szebeni G, Ayaydin F, Hideghéty K, Vigh L, Kitajka K, Balogh G, Puskás LG. Lipidomic analysis reveals a radiosensitizing role of gamma-linolenic acid in glioma cells. Biochim Biophys Acta. 1851;2015:1271–82.

    Google Scholar 

  83. Das UN. Gamma-linolenic acid therapy of human glioma-a review of in vitro, in vivo, and clinical studies. Med Sci Monit. 2007;13:RA119–31.

    CAS  PubMed  Google Scholar 

  84. Vartak S, McCaw R, Davis CS, Robbins ME, Spector AA. Gamma-linolenic acid (GLA) is cytotoxic to 36B10 malignant rat astrocytoma cells but not to ’normal’ rat astrocytes. Br J Cancer. 1998;77:1612–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fujiwara F, Todo S, Imashuku S. Antitumor effect of gamma-linolenic acid on cultured human neuroblastoma cells. Prostaglandins Leukot Med. 1986;23:311–20.

    Article  CAS  PubMed  Google Scholar 

  86. Nassar BA, Das UN, Huang YS, Ells G, Horrobin DF. The effect of chemical hepatocarcinogenesis on liver phospholipid composition in rats fed N-6 and N-3 fatty acid-supplemented diets. Proc Soc Exp Biol Med. 1992;199:365–8.

    Article  CAS  PubMed  Google Scholar 

  87. Dunbar LM, Bailey JM. Enzyme deletions and essential fatty acid metabolism in cultured cells. J Biol Chem. 1975;250:1152–3.

    CAS  Google Scholar 

  88. Bendetti A. Loss of lipid peroxidation as a histochemical marker for preneoplastic hepatocellular foci of rats. Cancer Res. 1984;44:5712–7.

    CAS  Google Scholar 

  89. Morton RE, Hartz JW, Reitz RC, Waite BM, Morris H. The acyl-CoA desaturases of microsomes from rat liver and the Morris 7777 hepatoma. Biochim Biophys Acta. 1979;573:321–31.

    Article  CAS  PubMed  Google Scholar 

  90. Das UN, Begin ME, Ells G, Huang YS, Horrobin DF. Polyunsaturated fatty acids augment free radical generation in tumor cells in vitro. Biochem Biophys Res Commun. 1987;145:15–24.

    Article  CAS  PubMed  Google Scholar 

  91. Das UN, Huang YS, Begin ME, Ells G, Horrobin DF. Uptake and distribution of cis-unsaturated fatty acids and their effect on free radical generation in normal and tumor cells in vitro. Free Radic Biol Med. 1987;3:9–14.

    Article  CAS  PubMed  Google Scholar 

  92. Das UN. Selective enhancement of free radicals in tumor cells as a strategy to kill tumor cells both in vitro and in vivo. In: Reddy CC, et al., editors. Biological oxidation systems. New York: Academic Press; 1990. p. 607–24.

    Chapter  Google Scholar 

  93. Naidu MR, Das UN, Kishan A. Intratumoral gamma-linoleic acid therapy of human gliomas. Prostaglandins Leukot Essent Fatty Acids. 1992;45:181–4.

    Article  CAS  PubMed  Google Scholar 

  94. Das UN, Prasad VV, Reddy DR. Local application of gamma-linolenic acid in the treatment of human gliomas. Cancer Lett. 1995;94:147–55.

    Article  CAS  PubMed  Google Scholar 

  95. Bakshi A, Mukherjee D, Bakshi A, Banerji AK, Das UN. Gamma-linolenic acid therapy of human gliomas. Nutrition. 2003;19:305–9.

    Article  CAS  PubMed  Google Scholar 

  96. Miyake JA, Benadiba M, Colquhoun A. Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression. Lipids Health Dis. 2009;8:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Benadiba M, Miyake JA, Colquhoun A. Gamma-linolenic acid alters Ku80, E2F1, and bax expression and induces micronucleus formation in C6 glioma cells in vitro. IUBMB Life. 2009;61:244–51.

    Article  CAS  PubMed  Google Scholar 

  98. Sangeetha PS, Das UN. Gamma-linolenic acid and eicosapentaenoic acid potentiate the cytotoxicity of anti-cancer drugs on human cervical carcinoma (HeLa) cells in vitro. Med Sci Res. 1993;21:457–9.

    Google Scholar 

  99. Madhavi N, Das UN. Reversal of KB-3-1 and KB-Ch-8-5 tumor cell drug-resistance by cis-unsaturated fatty acids in vitro. Med Sci Res. 1994;22:689–92.

    Google Scholar 

  100. Das UN, Madhavi N, Padma M, Sagar PS. Can tumor cell drug-resistance be reversed by essential fatty acids and their metabolites? Prostaglandins Leukot Essent Fatty Acids. 1998;58:39–54.

    Article  CAS  PubMed  Google Scholar 

  101. Germain E, Chajès V, Cognault S, Lhuillery C, Bougnoux P. Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MDA-MB-231: relationship to lipid peroxidation. Int J Cancer. 1998;75:578–83.

    Article  CAS  PubMed  Google Scholar 

  102. Mahéo K, Vibet S, Steghens JP, Dartigeas C, Lehman M, Bougnoux P, Goré J. Differential sensitization of cancer cells to doxorubicin by DHA: a role for lipoperoxidation. Free Radic Biol Med. 2005;39:742–51.

    Article  PubMed  CAS  Google Scholar 

  103. Ilc K, Ferrero JM, Fischel JL, Formento P, Bryce R, Etienne MC, Milano G. Cytotoxic effects of two gamma linoleic salts (lithium gammalinolenate or meglumine gammalinolenate) alone or associated with a nitrosourea: an experimental study on human glioblastoma cell lines. Anticancer Drugs. 1999;10:413–7.

    Article  CAS  PubMed  Google Scholar 

  104. Menendez JA, Ropero S, Lupu R, Colomer R. Omega-6 polyunsaturated fatty acid gamma-linolenic acid (18:3n-6) enhances docetaxel (Taxotere) cytotoxicity in human breast carcinoma cells: Relationship to lipid peroxidation and HER-2/neu expression. Oncol Rep. 2004;11:1241–52.

    CAS  PubMed  Google Scholar 

  105. Menéndez JA, Ropero S, del Barbacid MM, Montero S, Solanas M, Escrich E, Cortés-Funes H, Colomer R. Synergistic interaction between vinorelbine and gamma-linolenic acid in breast cancer cells. Breast Cancer Res Treat. 2002;72:203–19.

    Article  PubMed  Google Scholar 

  106. Menendez JA, Ropero S, Mehmi I, Atlas E, Colomer R, Lupu R. Overexpression and hyperactivity of breast cancer-associated fatty acid synthase (oncogenic antigen-519) is insensitive to normal arachidonic fatty acid-induced suppression in lipogenic tissues but it is selectively inhibited by tumoricidal alpha-linolenic and gamma-linolenic fatty acids: a novel mechanism by which dietary fat can alter mammary tumorigenesis. Int J Oncol. 2004;24:1369–83.

    CAS  PubMed  Google Scholar 

  107. Kong X, Ge H, Chen L, Liu Z, Yin Z, Li P, Li M. Gamma-linolenic acid modulates the response of multidrug-resistant K562 leukemic cells to anticancer drugs. Toxicol In Vitro. 2009;23:634–9.

    Article  CAS  PubMed  Google Scholar 

  108. Baranov V, Nagaeva O, Hammarstrom S, Mincheva-Nilsson L. Lipids as a constitutive component of cytolytic granules. Histochem Cell Biol. 2000;114:167–71.

    Article  CAS  PubMed  Google Scholar 

  109. Schlager SI, Ohanian SH. Correlation between lipid synthesis in tumor cells and their sensitivity to humoral immune attack. Science. 1977;197:773–6.

    Article  CAS  PubMed  Google Scholar 

  110. Schlager SI, Ohanian SH, Borsos T. Correlation between the ability of tumor cells to incorporate specific fatty acids and their sensitivity to killing by a specific antibody plus guinea pig complement. J Natl Cancer Inst. 1978;61:931–4.

    CAS  PubMed  Google Scholar 

  111. Schlager SI, Ohanian SH. Modulation of tumor cell susceptibility to humoral immune killing through chemical and physical manipulation of cellular lipid and fatty acid composition. J Immunol. 1980;125:1196–200.

    CAS  PubMed  Google Scholar 

  112. Schlager SI, Madden LD, Meltzer MS, Bara S, Mamula MJ. Role of macrophage lipids in regulating tumoricidal activity. Cell Immunol. 1983;77:52–68.

    Article  CAS  PubMed  Google Scholar 

  113. Schlager SI, Meltzer MS, Madden LD. Role of membrane lipids in the immunological killing of tumor cells: II. Effector cell lipids. Lipids. 1983;18:483–8.

    Article  CAS  PubMed  Google Scholar 

  114. Schlager SI, Ohanian SH. Role of membrane lipids in the immunological killing of tumor cells: I. Target cell lipids. Lipids. 1983;18:475–82.

    Article  CAS  PubMed  Google Scholar 

  115. Schlager SI, Meltzer MS. Role of macrophage lipids in regulating tumoricidal activity. II. Internal genetic and external physiologic regulatory factors controlling macrophage tumor cytotoxicity also control characteristic lipid changes associated with tumoricidal cells. Cell Immunol. 1983;80:10–9.

    Article  CAS  PubMed  Google Scholar 

  116. Kumar GS, Das UN. Effect of prostaglandins and their precursors on the proliferation of human lymphocytes and their secretion of tumor necrosis factor and various interleukins. Prostaglandins Leukot Essent Fatty Acids. 1994;50:331–4.

    Article  CAS  PubMed  Google Scholar 

  117. Dooper MM, van Riel B, Graus YM, M’Rabet L. Dihomo-gamma-linolenic acid inhibits tumour necrosis factor-alpha production by human leucocytes independently of cyclooxygenase activity. Immunology. 2003;110:348–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rossetti RG, Brathwaite K, Zurier RB. Suppression of acute inflammation with liposome associated prostaglandin E1. Prostaglandins. 1994;48:187–95.

    Article  CAS  PubMed  Google Scholar 

  119. Harizi H, Norbert G. Inhibition of IL-6, TNF-alpha, and cyclooxygenase-2 protein expression by prostaglandin E2-induced IL-10 in bone marrow-derived dendritic cells. Cell Immunol. 2004;228:99–109.

    Article  PubMed  CAS  Google Scholar 

  120. Duffin R, O’Connor RA, Crittenden S, Forster T, Yu C, Zheng X, et al. Prostaglandin E2 constrains systemic inflammation through an innate lymphoid cell–IL-22 axis. Science. 2016;351:1333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. FitzGerald GA. Bringing PGE2 in from the cold. Science. 2015;348:1208–9.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang Y, Desai A, Yang SY, Bae KB, Antczak MI, Fink SP, et al. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science. 2015;348:aaa2340. https://doi.org/10.1126/science.aaa2340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu C, Guan H, Cai C, Li F, Xiao J. Lipoxin A4 suppresses osteoclastogenesis in RAW264.7 cells and prevents ovariectomy-induced bone loss. Exp Cell Res. 2017;352:293–303.

    Article  CAS  PubMed  Google Scholar 

  124. Poorani R, Bhatt AN, Dwarakanath BS, Das UN. COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance. Eur J Pharmacol. 2016;785:116–32.

    Article  CAS  PubMed  Google Scholar 

  125. Das UN. Saturated fatty acids, MUFAs and PUFAs regulate ferroptosis. Cell Chem Biol. 2019;26:309–11.

    Article  CAS  PubMed  Google Scholar 

  126. Viswanathan V, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hangauer MJ, Viswanathan V, Ryan MJ, Bole D, Eaton JK, Matov A, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551:247–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ono S, Cai L, Cherian MG. Effects of gamma radiation on levels of brain metallothionein and lipid peroxidation in transgenic mice. Radiat Res. 1998;150:52–7.

    Article  CAS  PubMed  Google Scholar 

  129. Khadir A, Verreault J, Averill DA. Inhibition of antioxidants and hyperthermia enhance bleomycin-induced cytotoxicity and lipid peroxidation in Chinese hamster ovary cells. Arch Biochem Biophys. 1999;370:163–75.

    Article  CAS  PubMed  Google Scholar 

  130. Das UN, Padma M, Sangeetha P, et al. Stimulation of free radical generation in human leukocytes by various stimulants including tumor necrosis factor is a calmodulin dependent process. Biochem Biophys Res Commun. 1990;167:1030–6.

    Article  CAS  PubMed  Google Scholar 

  131. Babbar N, Casero RA Jr. Tumor necrosis factor-alpha increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: a potential mechanism for inflammation-induced carcinogenesis. Cancer Res. 2006;66:11125–30.

    Article  CAS  PubMed  Google Scholar 

  132. Wassmann S, Stumpf M, Strehlow K, Schmid A, Schieffer B, Böhm M, Nickenig G. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res. 2004;94:534–41.

    Article  CAS  PubMed  Google Scholar 

  133. Jupp OJ, Vandenabeele P, MacEwan DJ. Distinct regulation of cytosolic phospholipase A2 phosphorylation, translocation, proteolysis and activation by tumour necrosis factor-receptor subtypes. Biochem J. 2003;374(Pt 2):453–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gijón MA, Spencer DM, Siddiqi AR, Bonventre JV, Leslie CC. Cytosolic phospholipase A2 is required for macrophage arachidonic acid release by agonists that Do and Do not mobilize calcium. Novel role of mitogen-activated protein kinase pathways in cytosolic phospholipase A2 regulation. J Biol Chem. 2000;275:20146–56.

    Article  PubMed  Google Scholar 

  135. van Puijenbroek AA, Wissink S, van der Saag PT, Peppelenbosch MP. Phospholipase A2 inhibitors and leukotriene synthesis inhibitors block TNF-induced NF-kappaB activation. Cytokine. 1999;11:104–10.

    Article  PubMed  Google Scholar 

  136. Wu YL, Jiang XR, Newland AC, Kelsey SM. Failure to activate cytosolic phospholipase A2 causes TNF resistance in human leukemic cells. J Immunol. 1998;160:5929–35.

    CAS  PubMed  Google Scholar 

  137. Jayadev S, Hayter HL, Andrieu N, Gamard CJ, Liu B, Balu R, Hayakawa M, Ito F, Hannun YA. Phospholipase A2 is necessary for tumor necrosis factor alpha-induced ceramide generation in L929 cells. J Biol Chem. 1997;272:17196–203.

    Article  CAS  PubMed  Google Scholar 

  138. Das UN. Tumor necrosis factor / Cachectin: Biology and relevance to disease. J Assoc Physicians India. 1991;39:201–4.

    CAS  PubMed  Google Scholar 

  139. Veglia F, Tyurin VA, Blasi M, De Leo A, Kossenkov AV, Donthireddy L, et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature. 2019;569:73–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569:270–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Das UN, Huang YS, Begin ME, Horrobin DF. Interferons, phospholipid metabolism, immune responses and cancer. IRCS J Med Sci. 1986;14:1069–74.

    CAS  Google Scholar 

  142. Das UN, Ells G, Begin ME, Horrobin DF. Free radicals as possible mediators of the actions of interferon. J Free Radic Biol Med. 1986;2:183–8.

    Article  CAS  PubMed  Google Scholar 

  143. Mawatari K, Yasui Y, Sugitani K, Takadera T, Kato S. Reactive oxygen species involved in the glutamate toxicity of C6 glioma cells via xc antiporter system. Neuroscience. 1996;73:201–8.

    Article  CAS  PubMed  Google Scholar 

  144. Nishizawa S, Araki H, Ishikawa Y, Kitazawa S, Hata A, Soga T, Hara T. Low tumor glutathione level as a sensitivity marker for glutamate-cysteine ligase inhibitors. Oncol Lett. 2018;15:8735–43.

    PubMed  PubMed Central  Google Scholar 

  145. Devlin RG, Lin CS, Perper RJ, Dougherty H. Evaluation of free radical scavengers in studies of lymphocyte-mediated cytolysis. Immunopharmacology. 1981;3:147–59.

    Article  CAS  PubMed  Google Scholar 

  146. Duwe AK, Werkmeister J, Roder JC, Lauzon R, Payne U. Natural killer cell-mediated lysis involves an hydroxyl radical-dependent step. J Immunol. 1985;134:2637–44.

    CAS  PubMed  Google Scholar 

  147. Whalen MM, Doshi RN, Bader BW, Bankhurst AD. Lysophosphatidylcholine and arachidonic acid are required in the cytotoxic response of human natural killer cells to tumor target cells. Cell Physiol Biochem. 1999;9:297–309.

    Article  CAS  PubMed  Google Scholar 

  148. Carine K, Hudig D. Assessment of a role for phospholipase A2 and arachidonic acid metabolism in human lymphocyte natural cytotoxicity. Cell Immunol. 1984;87:270–83.

    Article  CAS  PubMed  Google Scholar 

  149. Bray RA, Brahmi Z. Role of lipoxygenation in human natural killer cell activation. J Immunol. 1986;136:1783–90.

    CAS  PubMed  Google Scholar 

  150. Cifone MG, Botti D, Festuccia C, Napolitano T, del Grosso E, Cavallo G, Chessa MA, Santoni A. Involvement of phospholipase A2 activation and arachidonic acid metabolism in the cytotoxic functions of rat NK cells. Cell Immunol. 1993;148:247–58.

    Article  CAS  PubMed  Google Scholar 

  151. Wang TG, Gotoh Y, Jennings MH, Rhoads CA, Aw TY. Lipid hydroperoxide-induced apoptosis in human colonic CaCo-2 cells is associated with an early loss of cellular redox balance. FASEB J. 2000;14:1567–76.

    Article  CAS  PubMed  Google Scholar 

  152. Paul S, Lal G. The Molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol. 2017;8:1124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Costa-Junior HM, Hamaty FC, da Silva FR, Einicker-Lamas M, da Silva MH, Persechini PM. Apoptosis-inducing factor of a cytotoxic T cell line: involvement of a secretory phospholipase A2. Cell Tissue Res. 2006;324:255–66.

    Article  CAS  PubMed  Google Scholar 

  154. Prima V, Kaliberova LN, Kaliberov S, Curiel DT, Kusmartsev S. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci U S A. 2017;114:1117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chen JH, Perry CJ, Tsui YC, Staron MM, Parish IA, Dominguez CX, Rosenberg DW, Kaech SM. Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat Med. 2015;21:327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ly LH, Smith R, Switzer KC, Chapkin RS, McMurray DN. Dietary eicosapentaenoic acid modulates CTLA-4 expression in murine CD4+ T-cells. Prostaglandins Leukot Essent Fatty Acids. 2006;74:29–37.

    Article  CAS  PubMed  Google Scholar 

  157. Brix S, Lund P, Kjaer TM, Straarup EM, Hellgren LI, Frøkiaer H. CD4(+) T-cell activation is differentially modulated by bacteria-primed dendritic cells, but is generally down-regulated by n-3 polyunsaturated fatty acids. Immunology. 2010;129:338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pestka JJ, Vines LL, Bates MA, He K, Langohr I. Comparative effects of n-3, n-6 and n-9 unsaturated fatty acid-rich diet consumption on lupus nephritis, autoantibody production and CD4+ T cell-related gene responses in the autoimmune NZBWF1 mouse. PLoS One. 2014;9:e100255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Wang CC, Yang CJ, Wu LH, Lin HC, Wen ZH, Lee CH. Eicosapentaenoic acid reduces indoleamine 2,3-dioxygenase 1 expression in tumor cells. Int J Med Sci. 2018;15:1296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bassal NK, Hughes BP, Costabile M. Arachidonic acid and its COX1/2 metabolites inhibit interferon-γ-mediated induction of indoleamine-2,3 dioxygenase in THP-1 cells and human monocytes. Prostaglandins Leukot Essent Fatty Acids. 2012;87:119–26.

    Article  CAS  PubMed  Google Scholar 

  161. Bassal NK, Hughes BP, Costabile M. Prostaglandin D2 is a novel repressor of IFNγ induced indoleamine-2,3-dioxygenase via the DP1 receptor and cAMP pathway. Prostaglandins Leukot Essent Fatty Acids. 2016;110:48–54.

    Article  CAS  PubMed  Google Scholar 

  162. Costabile M, Bassal NK, Gerber JP, Hughes BP. Inhibition of indoleamine 2,3-dioxygenase activity by fatty acids and prostaglandins: A structure function analysis. Prostaglandins Leukot Essent Fatty Acids. 2017;122:7–15.

    Article  CAS  PubMed  Google Scholar 

  163. Lee SY, Choi HK, Lee KJ, Jung JY, Hur GY, Jung KH, Kim JH, Shin C, Shim JJ, In KH, Kang KH, Yoo SH. The immune tolerance of cancer is mediated by IDO that is inhibited by COX-2 inhibitors through regulatory T cells. J Immunother. 2009;32:22–8.

    Article  CAS  PubMed  Google Scholar 

  164. von Bergwelt-Baildon MS, Popov A, Saric T, Chemnitz J, Classen S, Stoffel MS, Fiore F, Roth U, Beyer M, Debey S, Wickenhauser C, Hanisch FG, Schultze JL. CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood. 2006;108:228–37.

    Article  CAS  Google Scholar 

  165. Marshall B, Keskin DB, Mellor AL. Regulation of prostaglandin synthesis and cell adhesion by a tryptophan catabolizing enzyme. BMC Biochem. 2001;2:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Milella M, Gismondi A, Roncaioli P, Palmieri G, Morrone S, Piccoli M, Frati L, Cifone MG, Santoni A. Beta 1 integrin cross-linking inhibits CD16-induced phospholipase D and secretory phospholipase A2 activity and granule exocytosis in human NK cells: role of phospholipase D in CD16-triggered degranulation. J Immunol. 1999;162:2064–72.

    CAS  PubMed  Google Scholar 

  167. Glunde K, Jie C, Bhujwalla ZM. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res. 2004;64:4270–6.

    Article  CAS  PubMed  Google Scholar 

  168. Cai Q, Zhao Z, Antalis C, Yan L, Del Priore G, Hamed AH, Stehman FB, Schilder JM, Xu Y. Elevated and secreted phospholipase A2 activities as new potential therapeutic targets in human epithelial ovarian cancer. FASEB J. 2012;26:3306–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Eder AM, Sasagawa T, Mao M, Aoki J, Mills GB. Constitutive and lysophosphatidic acid (LPA)-induced LPA production: role of phospholipase D and phospholipase A2. Clin Cancer Res. 2000;6:2482–91.

    CAS  PubMed  Google Scholar 

  170. Zhang B, Wang F, Dai L, Cai H, Zhan Y, Gang S, Hu T, Xia C, Zhang B. Lentivirus-mediated PLCγ1 gene short-hairpin RNA suppresses tumor growth and metastasis of human gastric adenocarcinoma. Oncotarget. 2016;7:8043–54.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Chen Y, Rodrik V, Foster DA. Alternative phospholipase D/mTOR survival signal in human breast cancer cells. Oncogene. 2005;24:672–9.

    Article  CAS  PubMed  Google Scholar 

  172. Manos EJ, Kim ML, Kassis J, Chang PY, Wells A, Jones DA. Dolichol-phosphate-mannose-3 (DPM3)/prostin-1 is a novel phospholipase C-gamma regulated gene negatively associated with prostate tumor invasion. Oncogene. 2001;20:2781–90.

    Article  CAS  PubMed  Google Scholar 

  173. Bae SS, Perry DK, Oh YS, Choi JH, Galadari SH, Ghayur T, Ryu SH, Hannun YA, Suh PG. Proteolytic cleavage of phospholipase C-gamma1 during apoptosis in Molt-4 cells. FASEB J. 2000;14:1083–92.

    Article  CAS  PubMed  Google Scholar 

  174. Fosslien E. Molecular pathology of cyclooxygenase-2 in neoplasia. Ann Clin Lab Sci. 2000;30:3–21.

    CAS  PubMed  Google Scholar 

  175. Zweifel BS, Davis TW, Ornberg RL, Masferrer JL. Direct evidence for a role of cyclooxygenase 2-derived prostaglandin E2 in human head and neck xenograft tumors. Cancer Res. 2002;62:6706–11.

    CAS  PubMed  Google Scholar 

  176. Sun Y, Tang XM, Half E, Kuo MT, Sinicrope FA. Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res. 2002;62:6323–8.

    CAS  PubMed  Google Scholar 

  177. Zhen Y, Zhang W, Liu C, He J, Lu Y, Guo R, Feng J, Zhang Y, Chen J. Exogenous hydrogen sulfide promotes C6 glioma cell growth through activation of the p38 MAPK/ERK1/2-COX-2 pathways. Oncol Rep. 2015;34:2413–22.

    Article  CAS  PubMed  Google Scholar 

  178. Abdelrahim M, Safe S. Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expression in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Mol Pharmacol. 2005;68:317–29.

    Article  CAS  PubMed  Google Scholar 

  179. Chatterjee M, Das S, Roy K, Chatterjee M. Overexpression of 5-lipoxygenase and its relation with cell proliferation and angiogenesis in 7,12-dimethylbenz(α)anthracene-induced rat mammary carcinogenesis. Mol Carcinog. 2013;52:359–69.

    Article  CAS  PubMed  Google Scholar 

  180. Chatterjee M, Das S, Janarthan M, Ramachandran HK, Chatterjee M. Role of 5-lipoxygenase in resveratrol mediated suppression of 7,12-dimethylbenz(α)anthracene-induced mammary carcinogenesis in rats. Eur J Pharmacol. 2011;668:99–106.

    Article  CAS  PubMed  Google Scholar 

  181. Bellamkonda K, Chandrashekar NK, Osman J, Selvanesan BC, Savari S, Sjölander A. The eicosanoids leukotriene D4 and prostaglandin E2 promote the tumorigenicity of colon cancer-initiating cells in a xenograft mouse model. BMC Cancer. 2016;16:425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Bellamkonda K, Sime W, Sjölander A. The impact of inflammatory lipid mediators on colon cancer-initiating cells. Mol Carcinog. 2015;54:1315–27.

    Article  CAS  PubMed  Google Scholar 

  183. Massoumi R, Sjölander A. The role of leukotriene receptor signaling in inflammation and cancer. Scientific World J. 2007;7:1413–21.

    Article  CAS  Google Scholar 

  184. Hennig R, Osman T, Esposito I, Giese N, Rao SM, Ding XZ, Tong WG, Büchler MW, Yokomizo T, Friess H, Adrian TE. BLT2 is expressed in PanINs, IPMNs, pancreatic cancer and stimulates tumour cell proliferation. Br J Cancer. 2008;99:1064–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tong WG, Ding XZ, Hennig R, Witt RC, Standop J, Pour PM, Adrian TE. Leukotriene B4 receptor antagonist LY293111 inhibits proliferation and induces apoptosis in human pancreatic cancer cells. Clin Cancer Res. 2002;8:3232–42.

    CAS  PubMed  Google Scholar 

  186. Bittner S, Wielckens K. Glucocorticoid-induced lymphoma cell growth inhibition: the role of leukotriene B4. Endocrinology. 1988;123:991–1000.

    Article  CAS  PubMed  Google Scholar 

  187. Vincent JE, Vermeer MA, Kort WJ, Zijlstra FJ. The formation of thromboxane B2, leukotriene B4 and 12-hydroxyeicosatetraenoic acid by alveolar macrophages after activation during tumor growth in the rat. Biochim Biophys Acta. 1990;1042:255–8.

    Article  CAS  PubMed  Google Scholar 

  188. Parhamifar L, Jeppsson B, Sjölander A. Activation of cPLA2 is required for leukotriene D4-induced proliferation in colon cancer cells. Carcinogenesis. 2005;26:1988–98.

    Article  CAS  PubMed  Google Scholar 

  189. Ghosh J, Myers CE. Arachidonic acid stimulates prostate cancer cell growth: critical role of 5-lipoxygenase. Biochem Biophys Res Commun. 1997;235:418–23.

    Article  CAS  PubMed  Google Scholar 

  190. Ghosh J, Myers CE. Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci U S A. 1998;95:13182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. La E, Kern JC, Atarod EB, Kehrer JP. Fatty acid release and oxidation are factors in lipoxygenase inhibitor-induced apoptosis. Toxicol Lett. 2003;138:193–203.

    Article  CAS  PubMed  Google Scholar 

  192. Ghosh J, Myers CE. Molecular mechanisms of prostate cancer cell death triggered by inhibition of arachidonate 5-lipoxygenase: involvement of Fas death receptor-mediated signals. Adv Exp Med Biol. 2002;507:415–20.

    Article  CAS  PubMed  Google Scholar 

  193. Ghosh J. Inhibition of arachidonate 5-lipoxygenase triggers prostate cancer cell death through rapid activation of c-Jun N-terminal kinase. Biochem Biophys Res Commun. 2003;307:342–9.

    Article  CAS  PubMed  Google Scholar 

  194. Sarveswaran S, Chakraborty D, Chitale D, Sears R, Ghosh J. Inhibition of 5-lipoxygenase selectively triggers disruption of c-Myc signaling in prostate cancer cells. J Biol Chem. 2015;290:4994–5006.

    Article  CAS  PubMed  Google Scholar 

  195. Noguchi M, Earashi M, Minami M, Kinoshita K, Miyazaki I. Effects of eicosapentaenoic and docosahexaenoic acid on cell growth and prostaglandin E and leukotriene B production by a human breast cancer cell line (MDA-MB-231). Oncology. 1995;52:458–64.

    Article  CAS  PubMed  Google Scholar 

  196. Earashi M, Noguchi M, Kinoshita K, Tanaka M. Effects of eicosanoid synthesis inhibitors on the in vitro growth and prostaglandin E and leukotriene B secretion of a human breast cancer cell line. Oncology. 1995;52:150–5.

    Article  CAS  PubMed  Google Scholar 

  197. Das UN. Tuning free radical metabolism to kill tumor cells selectively with emphasis on the interaction(s) between essential fatty acids, free radicals, lymphokines and prostaglandins. Indian J Pathol Microbiol. 1990;33:94–100.

    CAS  PubMed  Google Scholar 

  198. Das UN. Lipoxins, resolvins, protectins, maresins and nitrolipids and their clinical implications with specific reference to cancer: Part I. Clin Lipidol. 2013;8:437–63.

    Article  CAS  Google Scholar 

  199. Perez-Ruiz E, Minute L, Otano I, Alvarez M, Ochoa MC, Belsue V, et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature. 2019;569:428–32.

    Article  CAS  PubMed  Google Scholar 

  200. Kumar SG, Das UN, Kumar KV, Madhavi DNP, Tan BKH. Effect of n-6 and n-3 fatty acids on the proliferation and secretion of TNF and IL-2 by human lymphocytes in vitro. Nutr Res. 1992;12:815–23.

    Article  CAS  Google Scholar 

  201. Das UN. Is lipoxins A4 a better alternative to anti-VEGF and anti-TNF-alpha antibody to prevent and treat age-related macular degeneration, diabetic macular edema and retinopathy? Med Sci Monit. 2011;18:LE1–2.

    Google Scholar 

  202. Stuhlmeier KM, Kao JJ, Bach FH. Arachidonic acid influences proinflammatory gene induction by stabilizing the inhibitor-kappaBalpha/nuclear factor-kappaB (NF-kappaB) complex, thus suppressing the nuclear translocation of NF-kappaB. J Biol Chem. 1997;272:24679–83.

    Article  CAS  PubMed  Google Scholar 

  203. Naveen KVG, Naidu VGM, Das UN. Arachidonic acid and lipoxin A4 attenuate alloxan-induced cytotoxicity to RIN5F cells in vitro and type 1 diabetes mellitus in vivo. Biofactors. 2017;43:251–71.

    Article  CAS  Google Scholar 

  204. Naveen KVG, Naidu VGM, Das UN. Arachidonic acid and lipoxin A4 attenuate streptozotocin-induced cytotoxicity to RIN5F cells in vitro and type 1 and type 2 diabetes mellitus in vivo. Nutrition. 2017;35:61–80.

    Article  CAS  Google Scholar 

  205. Naveen GV, Naidu G, Das UN. Amelioration of streptozotocin-induced type 2 diabetes mellitus in Wistar rats by arachidonic acid. Biochem Biophys Res Commun. 2018;496:105–13.

    Article  CAS  Google Scholar 

  206. Yu H, Liu Y, Pan W, Shen S, Das UN. Polyunsaturated fatty acids augment tumoricidal action of 5-fluorouracil on gastric cancer cells by their action on vascular endothelial growth factor, tumor necrosis factor-α and lipid metabolism related factors. Arch Med Sci. 2015;11:282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, Part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, U.N. (2020). Bioactive Lipid (BAL)-Based Therapeutic Approach to Cancer That Enhances Antitumor Action and Ameliorates Cytokine Release Syndrome of Immune Checkpoint Inhibitors. In: Molecular Biochemical Aspects of Cancer. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0741-1_6

Download citation

Publish with us

Policies and ethics