Advertisement

Sleep Oscillations and Psychiatric Disorders

Chapter
  • 333 Downloads

Abstract

Scalp-recorded EEG oscillations are rhythmic activities within a specific frequency range generated by underlying neuronal populations. In recent years, neuronal oscillations have been shown to be implicated in critical healthy brain functions, including memory, learning, and plasticity. Furthermore, numerous studies have established abnormal neural oscillations in neuropsychiatric conditions, thus suggesting the implication of oscillation-related underlying neuronal circuits in the neurobiology of those disorders. Sleep offers important advantages for investigating dysfunctions of brain circuits in neuropsychiatric patients. Sleep recordings minimize waking-related confounding factors, including fluctuation in attention, reduced cognitive ability, and presence of psychiatric symptoms. Additionally, the two main NREM sleep oscillations, slow waves and spindles, reflect the activity of complementary thalamocortical circuits. In this chapter we will describe the main characteristics of neuronal oscillations, including frequency and topography, with particular emphasis on slow waves and sleep spindles. We will then review the evidence for abnormal sleep oscillations in psychiatric disorders. Finally, we will discuss how these findings inform our current understanding of the neurobiology of brain disorders, and especially major depression and schizophrenia, and how future sleep studies may provide biological “signatures” to inform the diagnosis, prognosis, as well as treatment of psychiatric patients.

Keywords

Sleep High-density EEG Slow waves Sleep spindles Schizophrenia Major depression Biological signature 

References

  1. 1.
    Gore FM, Bloem PJ, Patton GC, Ferguson J, Joseph V, Coffey C, et al. Global burden of disease in young people aged 10-24 years: a systematic analysis. Lancet. 2011;377:2093–102.PubMedCrossRefGoogle Scholar
  2. 2.
    Collins PY, Patel V, Joestl SS, March D, Insel TR, Daar AS, et al. Grand challenges in global mental health. Nature. 2011;475:27–30.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Trede K, Salvatore P, Baethge C, Gerhard A, Maggini C, Baldessarini RJ. Manic-depressive illness: evolution in Kraepelin’s textbook, 1883-1926. Harv Rev Psychiatry. 2005;13:155–78.PubMedCrossRefGoogle Scholar
  4. 4.
    Fusar-Poli P, Politi P. Paul Eugen Bleuler and the birth of schizophrenia (1908). Am J Psychiatry. 2008;165:1407.PubMedCrossRefGoogle Scholar
  5. 5.
    Casey BJ, Craddock N, Cuthbert BN, Hyman SE, Lee FS, Ressler KJ. DSM-5 and RDoC: progress in psychiatry research? Nat Rev Neurosci. 2013;14:810–4.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Insel TR. Translating scientific opportunity into public health impact: a strategic plan for research on mental illness. Arch Gen Psychiatry. 2009;66:128–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Llinas RR. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988;242:1654–64.PubMedCrossRefGoogle Scholar
  8. 8.
    Uhlhaas PJ, Pipa G, Lima B, Melloni L, Neuenschwander S, Nikolic D, et al. Neural synchrony in cortical networks: history, concept and current status. Front Integr Neurosci. 2009;3:17.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Steriade M. The corticothalamic system in sleep. Front Biosci. 2003;8:d878–99.PubMedCrossRefGoogle Scholar
  11. 11.
    He BJ, Zempel JM, Snyder AZ, Raichle ME. The temporal structures and functional significance of scale-free brain activity. Neuron. 2010;66:353–69.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Steriade M. Impact of network activities on neuronal properties in corticothalamic systems. J Neurophysiol. 2001;86:1–39.PubMedCrossRefGoogle Scholar
  13. 13.
    Sirota A, Csicsvari J, Buhl D, Buzsaki G. Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci U S A. 2003;100:2065–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jerison HJ. Animal intelligence as encephalization. Philos Trans R Soc Lond Ser B Biol Sci. 1985;308:21–35.Google Scholar
  15. 15.
    Buzsaki G, Watson BO. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci. 2012;14:345–67.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I, et al. Regional slow waves and spindles in human sleep. Neuron. 2011;70:153–69.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hughes SW, Crunelli V. Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist. 2005;11:357–72.PubMedCrossRefGoogle Scholar
  18. 18.
    Hari R. Action-perception connection and the cortical mu rhythm. Prog Brain Res. 2006;159:253–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Niedermeyer E. Alpha rhythms as physiological and abnormal phenomena. Int J Psychophysiol. 1997;26:31–49.PubMedCrossRefGoogle Scholar
  20. 20.
    Uhlhaas PJ, Haenschel C, Nikolic D, Singer W. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull. 2008;34:927–43.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Pastor MA, Artieda J, Arbizu J, Marti-Climent JM, Penuelas I, Masdeu JC. Activation of human cerebral and cerebellar cortex by auditory stimulation at 40 Hz. J Neurosci. 2002;22:10501–6.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rosanova M, Casal A, Bellina V, Resta F, Mariotti M, Massimini M. Natural frequencies of human corticothalamic circuits. J Neurosci. 2009;29:7679–85.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Massimini M, Ferrarelli F, Esser SK, Riedner BA, Huber R, Murphy M, et al. Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci U S A. 2007;104:8496–501.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ngo HV, Martinetz T, Born J, Molle M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron. 2013;78:545–53.PubMedCrossRefGoogle Scholar
  25. 25.
    Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014;81:12–34.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mascetti L, Foret A, Bourdiec AS, Muto V, Kusse C, Jaspar M, et al. Spontaneous neural activity during human non-rapid eye movement sleep. Prog Brain Res. 2011;193:111–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Steriade M, Nunez A, Amzica F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993;13:3252–65.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience. 2006;137:1087–106.PubMedCrossRefGoogle Scholar
  29. 29.
    Timofeev I, Grenier F, Steriade M. Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc Natl Acad Sci U S A. 2001;98:1924–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Massimini M, Amzica F. Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. J Neurophysiol. 2001;85:1346–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Steriade M, Domich L, Oakson G, Deschenes M. The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol. 1987;57:260–73.PubMedCrossRefGoogle Scholar
  32. 32.
    Fuentealba P, Steriade M. The reticular nucleus revisited: intrinsic and network properties of a thalamic pacemaker. Prog Neurobiol. 2005;75:125–41.PubMedCrossRefGoogle Scholar
  33. 33.
    Golshani P, Liu XB, Jones EG. Differences in quantal amplitude reflect GluR4-subunit number at corticothalamic synapses on two populations of thalamic neurons. Proc Natl Acad Sci U S A. 2001;98:4172–7.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Jones EG. Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond Ser B Biol Sci. 2002;357:1659–73.CrossRefGoogle Scholar
  35. 35.
    Contreras D, Steriade M. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci. 1995;15:604–22.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010;11:114–26.CrossRefPubMedGoogle Scholar
  37. 37.
    Marshall L, Born J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn Sci. 2007;11:442–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Rasch B, Buchel C, Gais S, Born J. Odor cues during slow-wave sleep prompt declarative memory consolidation. Science. 2007;315:1426–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Tucker MA, Hirota Y, Wamsley EJ, Lau H, Chaklader A, Fishbein W. A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory. Neurobiol Learn Mem. 2006;86:241–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Korman M, Doyon J, Doljansky J, Carrier J, Dagan Y, Karni A. Daytime sleep condenses the time course of motor memory consolidation. Nat Neurosci. 2007;10:1206–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Plihal W, Born J. Effects of early and late nocturnal sleep on declarative and procedural memory. J Cogn Neurosci. 1997;9:534–47.PubMedCrossRefGoogle Scholar
  42. 42.
    Stickgold R, James L, Hobson JA. Visual discrimination learning requires sleep after training. Nat Neurosci. 2000;3:1237–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Huber R, Ghilardi MF, Massimini M, Tononi G. Local sleep and learning. Nature. 2004;430:78–81.PubMedCrossRefGoogle Scholar
  44. 44.
    Schmidt C, Peigneux P, Muto V, Schenkel M, Knoblauch V, Munch M, et al. Encoding difficulty promotes postlearning changes in sleep spindle activity during napping. J Neurosci. 2006;26:8976–82.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Marshall L, Helgadottir H, Molle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444:610–3.PubMedCrossRefGoogle Scholar
  46. 46.
    Antonenko D, Diekelmann S, Olsen C, Born J, Molle M. Napping to renew learning capacity: enhanced encoding after stimulation of sleep slow oscillations. Eur J Neurosci. 2013;37:1142–51.PubMedCrossRefGoogle Scholar
  47. 47.
    Aeschbach D, Cutler AJ, Ronda JM. A role for non-rapid-eye-movement sleep homeostasis in perceptual learning. J Neurosci. 2008;28:2766–72.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Landsness EC, Crupi D, Hulse BK, Peterson MJ, Huber R, Ansari H, et al. Sleep-dependent improvement in visuomotor learning: a causal role for slow waves. Sleep. 2009;32:1273–84.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Huber R, Ghilardi MF, Massimini M, Ferrarelli F, Riedner BA, Peterson MJ, et al. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci. 2006;9:1169–76.PubMedCrossRefGoogle Scholar
  50. 50.
    Molle M, Born J. Slow oscillations orchestrating fast oscillations and memory consolidation. Prog Brain Res. 2011;193:93–110.PubMedCrossRefGoogle Scholar
  51. 51.
    Fogel SM, Smith CT. The function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neurosci Biobehav Rev. 2011;35:1154–65.PubMedCrossRefGoogle Scholar
  52. 52.
    Eschenko O, Molle M, Born J, Sara SJ. Elevated sleep spindle density after learning or after retrieval in rats. J Neurosci. 2006;26:12914–20.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Gais S, Molle M, Helms K, Born J. Learning-dependent increases in sleep spindle density. J Neurosci. 2002;22:6830–4.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Morin A, Doyon J, Dostie V, Barakat M, Hadj Tahar A, Korman M, et al. Motor sequence learning increases sleep spindles and fast frequencies in post-training sleep. Sleep. 2008;31:1149–56.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Schabus M, Gruber G, Parapatics S, Sauter C, Klosch G, Anderer P, et al. Sleep spindles and their significance for declarative memory consolidation. Sleep. 2004;27:1479–85.PubMedCrossRefGoogle Scholar
  56. 56.
    Clemens Z, Fabo D, Halasz P. Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience. 2005;132:529–35.PubMedCrossRefGoogle Scholar
  57. 57.
    Clemens Z, Fabo D, Halasz P. Twenty-four hours retention of visuospatial memory correlates with the number of parietal sleep spindles. Neurosci Lett. 2006;403:52–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Nishida M, Walker MP. Daytime naps, motor memory consolidation and regionally specific sleep spindles. PLoS One. 2007;2:e341.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Tamaki M, Matsuoka T, Nittono H, Hori T. Fast sleep spindle (13–15 Hz) activity correlates with sleep-dependent improvement in visuomotor performance. Sleep. 2008;31:204–11.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Molle M, Marshall L, Gais S, Born J. Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci. 2002;22:10941–7.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Siapas AG, Wilson MA. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron. 1998;21:1123–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Wierzynski CM, Lubenov EV, Gu M, Siapas AG. State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron. 2009;61:587–96.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Inostroza M, Born J. Sleep for preserving and transforming episodic memory. Annu Rev Neurosci. 2013;36:79–102.PubMedCrossRefGoogle Scholar
  64. 64.
    Molle M, Born J. Hippocampus whispering in deep sleep to prefrontal cortex—for good memories? Neuron. 2009;61:496–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Tononi G, Cirelli C. Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull. 2003;62:143–50.PubMedCrossRefGoogle Scholar
  66. 66.
    Hill S, Tononi G, Ghilardi MF. Sleep improves the variability of motor performance. Brain Res Bull. 2008;76:605–11.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Olcese U, Esser SK, Tononi G. Sleep and synaptic renormalization: a computational study. J Neurophysiol. 2010;104:3476–93.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hashmi A, Nere A, Tononi G. Sleep-dependent synaptic down-selection (II): single-neuron level benefits for matching, selectivity, and specificity. Front Neurol. 2013;4:148.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Nere A, Hashmi A, Cirelli C, Tononi G. Sleep-dependent synaptic down-selection (I): modeling the benefits of sleep on memory consolidation and integration. Front Neurol. 2013;4:143.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Huber R, Born J. Sleep, synaptic connectivity, and hippocampal memory during early development. Trends Cogn Sci. 2014;18:141–52.PubMedCrossRefGoogle Scholar
  71. 71.
    Lepola U, Nousiainen U, Puranen M, Riekkinen P, Rimon R. EEG and CT findings in patients with panic disorder. Biol Psychiatry. 1990;28:721–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Reynolds CF 3rd, Shaw DH, Newton TF, Coble PA, Kupfer DJ. EEG sleep in outpatients with generalized anxiety: a preliminary comparison with depressed outpatients. Psychiatry Res. 1983;8:81–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Papadimitriou GN, Kerkhofs M, Kempenaers C, Mendlewicz J. EEG sleep studies in patients with generalized anxiety disorder. Psychiatry Res. 1988;26:183–90.PubMedCrossRefGoogle Scholar
  74. 74.
    Feinberg I, Fein G, Walker JM, Price LJ, Floyd TC, March JD. Flurazepam effects on slow-wave sleep: stage 4 suppressed but number of delta waves constant. Science. 1977;198:847–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Kobayashi I, Boarts JM, Delahanty DL. Polysomnographically measured sleep abnormalities in PTSD: a meta-analytic review. Psychophysiology. 2007;44:660–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Germain A. Sleep disturbances as the hallmark of PTSD: where are we now? Am J Psychiatry. 2013;170:372–82.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Feinberg I, Floyd TC, March JD. Acute deprivation of the terminal 3.5 hours of sleep does not increase delta (0-3-Hz) electroencephalograms in recovery sleep. Sleep. 1991;14:316–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Neylan TC, Lenoci M, Maglione ML, Rosenlicht NZ, Metzler TJ, Otte C, et al. Delta sleep response to metyrapone in post-traumatic stress disorder. Neuropsychopharmacology. 2003;28:1666–76.PubMedCrossRefGoogle Scholar
  79. 79.
    Insel TR, Gillin JC, Moore A, Mendelson WB, Loewenstein RJ, Murphy DL. The sleep of patients with obsessive-compulsive disorder. Arch Gen Psychiatry. 1982;39:1372–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Kluge M, Schussler P, Dresler M, Yassouridis A, Steiger A. Sleep onset REM periods in obsessive compulsive disorder. Psychiatry Res. 2007;152:29–35.PubMedCrossRefGoogle Scholar
  81. 81.
    Robinson D, Walsleben J, Pollack S, Lerner G. Nocturnal polysomnography in obsessive-compulsive disorder. Psychiatry Res. 1998;80:257–63.PubMedCrossRefGoogle Scholar
  82. 82.
    Monti JM, Monti D. Sleep disturbance in schizophrenia. Int Rev Psychiatry. 2005;17:247–53.PubMedCrossRefGoogle Scholar
  83. 83.
    Kahn-Greene ET, Killgore DB, Kamimori GH, Balkin TJ, Killgore WD. The effects of sleep deprivation on symptoms of psychopathology in healthy adults. Sleep Med. 2007;8:215–21.PubMedCrossRefGoogle Scholar
  84. 84.
    Benson KL. leep in schizophrenia: impairments, correlates, and treatment. Psychiatr Clin North Am. 2006;29:1033–45; abstract ix–x.PubMedCrossRefGoogle Scholar
  85. 85.
    Miller TJ, Zipursky RB, Perkins D, Addington J, Woods SW, Hawkins KA, et al. The PRIME North America randomized double-blind clinical trial of olanzapine versus placebo in patients at risk of being prodromally symptomatic for psychosis. II. Baseline characteristics of the “prodromal” sample. Schizophr Res. 2003;61:19–30.PubMedCrossRefGoogle Scholar
  86. 86.
    Chouinard S, Poulin J, Stip E, Godbout R. Sleep in untreated patients with schizophrenia: a meta-analysis. Schizophr Bull. 2004;30:957–67.PubMedCrossRefGoogle Scholar
  87. 87.
    Gordon JA, Moore H. Charting a course toward an understanding of schizophrenia. Neuron. 2012;76:465–7.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Keefe RS. The longitudinal course of cognitive impairment in schizophrenia: an examination of data from premorbid through posttreatment phases of illness. J Clin Psychiatry. 2014;75(Suppl 2):8–13.PubMedCrossRefGoogle Scholar
  89. 89.
    Yang C, Winkelman JW. Clinical significance of sleep EEG abnormalities in chronic schizophrenia. Schizophr Res. 2006;82:251–60.PubMedCrossRefGoogle Scholar
  90. 90.
    Poulin J, Daoust AM, Forest G, Stip E, Godbout R. Sleep architecture and its clinical correlates in first episode and neuroleptic-naive patients with schizophrenia. Schizophr Res. 2003;62:147–53.PubMedCrossRefGoogle Scholar
  91. 91.
    Keshavan MS, Reynolds CF 3rd, Miewald MJ, Montrose DM, Sweeney JA, Vasko RC Jr, et al. Delta sleep deficits in schizophrenia: evidence from automated analyses of sleep data. Arch Gen Psychiatry. 1998;55:443–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Hiatt JF, Floyd TC, Katz PH, Feinberg I. Further evidence of abnormal non-rapid-eye-movement sleep in schizophrenia. Arch Gen Psychiatry. 1985;42:797–802.PubMedCrossRefGoogle Scholar
  93. 93.
    Goder R, Aldenhoff JB, Boigs M, Braun S, Koch J, Fritzer G. Delta power in sleep in relation to neuropsychological performance in healthy subjects and schizophrenia patients. J Neuropsychiatry Clin Neurosci. 2006;18:529–35.PubMedCrossRefGoogle Scholar
  94. 94.
    Tekell JL, Hoffmann R, Hendrickse W, Greene RW, Rush AJ, Armitage R. High frequency EEG activity during sleep: characteristics in schizophrenia and depression. Clin EEG Neurosci. 2005;36:25–35.PubMedCrossRefGoogle Scholar
  95. 95.
    Ferrarelli F, Huber R, Peterson MJ, Massimini M, Murphy M, Riedner BA, et al. Reduced sleep spindle activity in schizophrenia patients. Am J Psychiatry. 2007;164:483–92.PubMedCrossRefGoogle Scholar
  96. 96.
    Ferrarelli F, Peterson MJ, Sarasso S, Riedner BA, Murphy MJ, Benca RM, et al. Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles. Am J Psychiatry. 2010;167:1339–48.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Boutros NN, Mucci A, Vignapiano A, Galderisi S. Electrophysiological aberrations associated with negative symptoms in schizophrenia. Curr Top Behav Neurosci. 2014;21:129–56.PubMedCrossRefGoogle Scholar
  98. 98.
    Van Cauter E, Linkowsk P, Kerkhofs M, Hubain P, L’Hermite-Baleriaux M, Leclercq R, et al. Circadian and sleep-related endocrine rhythms in schizophrenia. Arch Gen Psychiatry. 1991;48:348–56.PubMedCrossRefGoogle Scholar
  99. 99.
    Ferrarelli F, Tononi G. The thalamic reticular nucleus and schizophrenia. Schizophr Bull. 2011;37:306–15.PubMedCrossRefGoogle Scholar
  100. 100.
    Manoach DS, Demanuele C, Wamsley EJ, Vangel M, Montrose DM, Miewald J, et al. Sleep spindle deficits in antipsychotic-naive early course schizophrenia and in non-psychotic first-degree relatives. Front Hum Neurosci. 2014;8:762.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ohayon MM. Prevalence and correlates of nonrestorative sleep complaints. Arch Intern Med. 2005;165:35–41.PubMedCrossRefGoogle Scholar
  102. 102.
    Ohayon MM, Roth T. Place of chronic insomnia in the course of depressive and anxiety disorders. J Psychiatr Res. 2003;7:9–15.CrossRefGoogle Scholar
  103. 103.
    Benca RM, Obermeyer WH, Thisted RA, Gillin JC. Sleep and psychiatric disorders. A meta-analysis. Arch Gen Psychiatry. 1992;49:651–68; discussion 669–70.PubMedCrossRefGoogle Scholar
  104. 104.
    Borbely AA, Tobler I, Loepfe M, Kupfer DJ, Ulrich RF, Grochocinski V, et al. All-night spectral analysis of the sleep EEG in untreated depressives and normal controls. Psychiatry Res. 1984;12:27–33.PubMedCrossRefGoogle Scholar
  105. 105.
    Hoffmann R, Hendrickse W, Rush AJ, Armitage R. Slow-wave activity during non-REM sleep in men with schizophrenia and major depressive disorders. Psychiatry Res. 2000;95:215–25.PubMedCrossRefGoogle Scholar
  106. 106.
    Schwartz PJ, Rosenthal NE, Wehr TA. Band-specific electroencephalogram and brain cooling abnormalities during NREM sleep in patients with winter depression. Biol Psychiatry. 2001;50:627–32.PubMedCrossRefGoogle Scholar
  107. 107.
    Armitage R, Calhoun JS, Rush AJ, Roffwarg HP. Comparison of the delta EEG in the first and second non-REM periods in depressed adults and normal controls. Psychiatry Res. 1992;41:65–72.PubMedCrossRefGoogle Scholar
  108. 108.
    Mendelson WB, Sack DA, James SP, Martin JV, Wagner R, Garnett D, et al. Frequency analysis of the sleep EEG in depression. Psychiatry Res. 1987;21:89–94.PubMedCrossRefGoogle Scholar
  109. 109.
    Armitage R, Hoffmann R, Trivedi M, Rush AJ. Slow-wave activity in NREM sleep: sex and age effects in depressed outpatients and healthy controls. Psychiatry Res. 2000;95:201–13.PubMedCrossRefGoogle Scholar
  110. 110.
    Plante DT, Landsness EC, Peterson MJ, Goldstein MR, Riedner BA, Wanger T, et al. Sex-related differences in sleep slow wave activity in major depressive disorder: a high-density EEG investigation. BMC Psychiatry. 2012;12:146.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Plante DT, Landsness EC, Peterson MJ, Goldstein MR, Wanger T, Guokas JJ, et al. Altered slow wave activity in major depressive disorder with hypersomnia: a high density EEG pilot study. Psychiatry Res. 2012;201:240–4.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Duncan WC, Sarasso S, Ferrarelli F, Selter J, Riedner BA, Hejazi NS, et al. Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int J Neuropsychopharmacol. 2013;16:301–11.PubMedCrossRefGoogle Scholar
  113. 113.
    Manoach DS. Sleep spindle deficits in antipsychotic-naïve early course schizophrenia and in non-psychotic first-degree relatives. Front Hum Neurosci. 2014;8:762.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Camchong J, Dyckman KA, Chapman CE, Yanasak NE, McDowell JE. Basal ganglia-thalamocortical circuitry disruptions in schizophrenia during delayed response tasks. Biol Psychiatry. 2006;60:235–41.PubMedCrossRefGoogle Scholar
  115. 115.
    Ferrarelli F, Massimini M, Peterson MJ, Riedner BA, Lazar M, Murphy MJ, et al. Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study. Am J Psychiatry. 2008;165:996–1005.PubMedCrossRefGoogle Scholar
  116. 116.
    Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney WE Jr, Jones EG. Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry. 1996;53:425–36.PubMedCrossRefGoogle Scholar
  117. 117.
    Zikopoulos B, Barbas H. Circuits for multisensory integration and attentional modulation through the prefrontal cortex and the thalamic reticular nucleus in primates. Rev Neurosci. 2007;18:417–38.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    McAlonan K, Cavanaugh J, Wurtz RH. Guarding the gateway to cortex with attention in visual thalamus. Nature. 2008;456:391–4.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Krause M, Hoffmann WE, Hajos M. Auditory sensory gating in hippocampus and reticular thalamic neurons in anesthetized rats. Biol Psychiatry. 2003;53:244–53.PubMedCrossRefGoogle Scholar
  120. 120.
    Freedman R, Ross R, Leonard S, Myles-Worsley M, Adams CE, Waldo M, et al. Early biomarkers of psychosis. Dialogues Clin Neurosci. 2005;7:17–29.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Tregellas JR, Davalos DB, Rojas DC, Waldo MC, Gibson L, Wylie K, et al. Increased hemodynamic response in the hippocampus, thalamus and prefrontal cortex during abnormal sensory gating in schizophrenia. Schizophr Res. 2007;92:262–72.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Sherman SM, Guillery RW. The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond Ser B Biol Sci. 2002;357:1695–708.CrossRefGoogle Scholar
  123. 123.
    Buchmann A, Dentico D, Peterson MJ, Riedner BA, Sarasso S, Massimini M, et al. Reduced mediodorsal thalamic volume and prefrontal cortical spindle activity in schizophrenia. NeuroImage. 2014;102(Pt 2):540–7.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Nakamura M, Uchida S, Maehara T, Kawai K, Hirai N, Nakabayashi T, et al. Sleep spindles in human prefrontal cortex: an electrocorticographic study. Neurosci Res. 2003;45:419–27.PubMedCrossRefGoogle Scholar
  125. 125.
    Ramcharan EJ, Gnadt JW, Sherman SM. Higher-order thalamic relays burst more than first-order relays. Proc Natl Acad Sci U S A. 2005;102:12236–41.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Wei H, Bonjean M, Petry HM, Sejnowski TJ, Bickford ME. Thalamic burst firing propensity: a comparison of the dorsal lateral geniculate and pulvinar nuclei in the tree shrew. J Neurosci. 2011;31:17287–99.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Astori S, Wimmer RD, Luthi A. Manipulating sleep spindles—expanding views on sleep, memory, and disease. Trends Neurosci. 2013;36:738–48.PubMedCrossRefGoogle Scholar
  128. 128.
    Huguenard JR. Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol. 1996;58:329–48.PubMedCrossRefGoogle Scholar
  129. 129.
    Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss D. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci. 1999;19:1895–911.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Crandall SR, Govindaiah G, Cox CL. Low-threshold Ca2+ current amplifies distal dendritic signaling in thalamic reticular neurons. J Neurosci. 2010;30:15419–29.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Astori S, Wimmer RD, Prosser HM, Corti C, Corsi M, Liaudet N, et al. The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci U S A. 2011;108:13823–8.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    International Stroke Genetics Consortium (ISGC), Wellcome Trust Case Control Consortium 2 (WTCCC2), Bellenguez C, Bevan S, Gschwendtner A, Spencer CC, et al. Genome-wide association study identifies a variant in HDAC9 associated withy large vessel ischemic stroke. Nat Genet. 2012;44:328–33.CrossRefGoogle Scholar
  133. 133.
    Pangratz-Fuehrer S, Rudolph U, Huguenard JR. Giant spontaneous depolarizing potentials in the developing thalamic reticular nucleus. J Neurophysiol. 2007;97:2364–72.PubMedCrossRefGoogle Scholar
  134. 134.
    Reynolds GP, Harte MK. The neuronal pathology of schizophrenia: molecules and mechanisms. Biochem Soc Trans. 2007;35:433–6.PubMedCrossRefGoogle Scholar
  135. 135.
    Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6:312–24.PubMedCrossRefGoogle Scholar
  136. 136.
    Daskalakis ZJ, Christensen BK, Fitzgerald PB, Moller B, Fountain SI, Chen R. Increased cortical inhibition in persons with schizophrenia treated with clozapine. J Psychopharmacol. 2008;22:203–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Pakkenberg B, Scheel-Kruger J, Kristiansen LV. Schizophrenia; from structure to function with special focus on the mediodorsal thalamic prefrontal loop. Acta Psychiatr Scand. 2009;120:345–54.PubMedCrossRefGoogle Scholar
  138. 138.
    Santana N, Troyano-Rodriguez E, Mengod G, Celada P, Artigas F. Activation of thalamocortical networks by the N-methyl-D-aspartate receptor antagonist phencyclidine: reversal by clozapine. Biol Psychiatry. 2011;69:918–27.PubMedCrossRefGoogle Scholar
  139. 139.
    Jardemark K, Marcus MM, Shahid M, Svensson TH. Effects of asenapine on prefrontal N-methyl-D-aspartate receptor-mediated transmission: involvement of dopamine D1 receptors. Synapse. 2010;64:870–4.PubMedCrossRefGoogle Scholar
  140. 140.
    Zhang Y, Llinas RR, Lisman JE. Inhibition of NMDARs in the nucleus reticularis of the thalamus produces delta frequency bursting. Front Neural Circ. 2009;3:20.Google Scholar
  141. 141.
    Dawson N, Morris BJ, Pratt JA. Subanaesthetic ketamine treatment alters prefrontal cortex connectivity with thalamus and ascending subcortical systems. Schizophr Bull. 2013;39:366–77.PubMedCrossRefGoogle Scholar
  142. 142.
    Esser SK, Hill S, Tononi G. Sleep homeostasis and cortical synchronization: I. modeling the effects of synaptic strength on sleep slow waves. Sleep. 2007;30:1617–30.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Vyazovskiy VV, Riedner BA, Cirelli C, Tononi G. Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep. 2007;30:1631–42.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci. 2008;11:200–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Duncan WC Jr, Zarate CA Jr. Ketamine, sleep, and depression: current status and new questions. Curr Psychiatry Rep. 2013;15:394.PubMedCrossRefGoogle Scholar
  146. 146.
    Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–5.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci. 2008;28:4088–95.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Huber R, Tononi G, Cirelli C. Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep. 2007;30:129–39.PubMedCrossRefGoogle Scholar
  149. 149.
    Bachmann V, Klein C, Bodenmann S, Schafer N, Berger W, Brugger P, et al. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep. 2012;35:335–44.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Laje G, Lally N, Mathews D, Brutsche N, Chemerinski A, Akula N, et al. Brain-derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients. Biol Psychiatry. 2012;72:e27–8.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Duman RS, Li N, Liu RJ, Duric V, Aghajanian G. Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology. 2012;62:35–41.PubMedCrossRefGoogle Scholar
  152. 152.
    Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Liu RJ, Fuchikami M, Dwyer JM, Lepack AE, Duman RS, Aghajanian GK. GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology. 2013;38:2268–77.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Li X, Tizzano JP, Griffey K, Clay M, Lindstrom T, Skolnick P. Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology. 2001;40:1028–33.PubMedCrossRefGoogle Scholar
  155. 155.
    O’Neill MJ, Bleakman D, Zimmerman DM, Nisenbaum ES. AMPA receptor potentiators for the treatment of CNS disorders. CNS Neurol Disord. 2004;3:181–94.CrossRefGoogle Scholar
  156. 156.
    Akinfiresoye L, Tizabi Y. Antidepressant effects of AMPA and ketamine combination: role of hippocampal BDNF, synapsin, and mTOR. Psychopharmacology. 2013;230:291–8.PubMedCrossRefGoogle Scholar
  157. 157.
    Borbely AA, Wirz-Justice A. Sleep, sleep deprivation and depression. A hypothesis derived from a model of sleep regulation. Hum Neurobiol. 1982;1:205–10.PubMedGoogle Scholar
  158. 158.
    Duncan WC Jr, Selter J, Brutsche N, Sarasso S, Zarate CA Jr. Baseline delta sleep ratio predicts acute ketamine mood response in major depressive disorder. J Affect Disord. 2013;145:115–9.PubMedCrossRefGoogle Scholar
  159. 159.
    Wamsley EJ, Shinn AK, Tucker MA, Ono KE, McKinley SK, Ely AV, et al. The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: a randomized placebo-controlled trial. Sleep. 2013;36:1369–76.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.University of Pittsburgh Medical CenterPittsburghUSA
  2. 2.University of Wisconsin-MadisonMadisonUSA

Personalised recommendations