Advertisement

A Role for Neuronal Oscillations of Sleep in Memory and Cognition

Chapter
  • 318 Downloads

Abstract

This chapter gives an overview on relevant topics pertaining to cognition, in particular to memory consolidation during sleep. First, a brief overview on the extent of research on this topic in several nonmammalian species is given. Then neuronal oscillations are described with a main focus on sleep spindles and slow oscillations, and their occurrence in human scalp EEG. In particular, the relevance of discriminating between slow and fast spindle oscillations measured in different sleep states is underscored. Findings on memory consolidation based on the ability to induce neuronal oscillations of sleep without significant perturbation of the subsequent sleep architecture are reported next. Studies highlighting essential aspects of sleep’s effect on memory are then presented together with a discussion on postexperience neuronal oscillations during sleep. A summary puts the interdependence of neuronal oscillations and cognitive processes during sleep into a broader biological perspective.

Keywords

Sleep Memory Slow oscillation Sleep spindles Prefrontal cortex 

Notes

Acknowledgements

This work was supported by the German Ministry of Education and Research (BMBF)/NSF, grant01GQ1706, and DFG (CRC/TR654, part A6). The author wishes to thank colleagues Sonja Binder, Sonat Aksamaz, and Dominc Aumann for comments on this or a previous version of the manuscript, as well as Abdullah-al-kamran Ripon for technical assistance.

References

  1. 1.
    Abel T, Kandel E. Positive and negative regulatory mechanisms that mediate long-term memory storage. Brain Res Brain Res Rev. 1998;26(2–3):360–78.PubMedCrossRefGoogle Scholar
  2. 2.
    Bushey D, Cirelli C. From genetics to structure to function: exploring sleep in Drosophila. Int Rev Neurobiol. 2011;99:213–44.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kamyshev NG, Iliadi KG, Bragina JV. Drosophila conditioned courtship: two ways of testing memory. Learn Mem. 1999;6(1):1–20.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Zimmerman JE, Naidoo N, Raizen DM, Pack AI. Conservation of sleep: insights from non-mammalian model systems. Trends Neurosci. 2008;31(7):371–6.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Yap MHW, Grabowska MJ, Rohrscheib C, Jeans R, Troup M, Paulk AC, et al. Oscillatory brain activity in spontaneous and induced sleep stages in flies. Nat Commun. 2017;8(1):1815.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Davis RL. Traces of Drosophila memory. Neuron. 2011;70(1):8–19.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Pan Y, Zhou Y, Guo C, Gong H, Gong Z, Liu L. Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn Mem. 2009;16(5):289–95.PubMedCrossRefGoogle Scholar
  8. 8.
    Van Swinderen B. Fly memory: a mushroom body story in parts. Curr Biol. 2009;19(18):R855–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Beyaert L, Greggers U, Menzel R. Honeybees consolidate navigation memory during sleep. J Exp Biol. 2012;215(Pt 22):3981–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Zwaka H, Bartels R, Gora J, Franck V, Culo A, Gotsch M, et al. Context odor presentation during sleep enhances memory in honeybees. Curr Biol. 2015;25(21):2869–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Ramon F, Mendoza-Angeles K, Hernandez-Falcon J. Sleep in invertebrates: crayfish. Front Biosci (Schol Ed). 2012;4:1190–200.CrossRefGoogle Scholar
  12. 12.
    Bierbower SM, Shuranova ZP, Viele K, Cooper RL. Comparative study of environmental factors influencing motor task learning and memory retention in sighted and blind crayfish. Brain Behav. 2013;3(1):4–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Tierney AJ, Lee J. Spatial learning in a T-maze by the crayfish Orconectes rusticus. J Comp Psychol. 2011;125(1):31–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Rattenborg NC, Martinez-Gonzalez D, Roth TC, Pravosudov VV. Hippocampal memory consolidation during sleep: a comparison of mammals and birds. Biol Rev Camb Philos Soc. 2011;86(3):658–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Tobler I, Borbély A. Sleep and EEG spectra in the pigeon (Columba livia) under baseline condtions and after sleep deprivation. J Comp Physiol A. 1988;163:729–38.CrossRefGoogle Scholar
  16. 16.
    van der Meij J, Martinez-Gonzalez D, Beckers GJL, Rattenborg NC. Intra-“cortical” activity during avian non-REM and REM sleep: variant and invariant traits between birds and mammals. Sleep. 2019;42(2).Google Scholar
  17. 17.
    Jackson C, McCabe BJ, Nicol AU, Grout AS, Brown MW, Horn G. Dynamics of a memory trace: effects of sleep on consolidation. Curr Biol. 2008;18(6):393–400.PubMedCrossRefGoogle Scholar
  18. 18.
    Nelini C, Bobbo D, Mascetti GG. Local sleep: a spatial learning task enhances sleep in the right hemisphere of domestic chicks (Gallus gallus). Exp Brain Res. 2010;205(2):195–204.PubMedCrossRefGoogle Scholar
  19. 19.
    Peyrache A, Battaglia FP, Destexhe A. Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputs. Proc Natl Acad Sci U S A. 2011;108(41):17207–12.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wierzynski CM, Lubenov EV, Gu M, Siapas AG. State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron. 2009;61(4):587–96.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Csercsa R, Dombovari B, Fabo D, Wittner L, Eross L, Entz L, et al. Laminar analysis of slow wave activity in humans. Brain. 2010;133(9):2814–29.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Sanchez-Vives MV, Mattia M, Compte A, Perez-Zabalza M, Winograd M, Descalzo VF, et al. Inhibitory modulation of cortical up states. J Neurophysiol. 2010;104(3):1314–24.PubMedCrossRefGoogle Scholar
  23. 23.
    Destexhe A, Sejnowski TJ. Thalamocortical assemblies. Oxford, UK: Oxford University Press; 2001.Google Scholar
  24. 24.
    Steriade M, Deschenes M. The thalamus as a neuronal oscillator. Brain Res. 1984;320(1):1–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Steriade M, McCarley RW. Synchronized brain oscillations leading to neuronal plasticity during waking and sleep states. In: Brain control of wakefulness and sleep. 2nd ed. New York: Springer; 2005. p. 255–344.Google Scholar
  26. 26.
    Contreras D, Destexhe A, Sejnowski TJ, Steriade M. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science. 1996;274(5288):771–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Mak-McCully RA, Rolland M, Sargsyan A, Gonzalez C, Magnin M, Chauvel P, et al. Coordination of cortical and thalamic activity during non-REM sleep in humans. Nat Commun. 2017;8:15499.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gardner RJ, Hughes SW, Jones MW. Differential spike timing and phase dynamics of reticular thalamic and prefrontal cortical neuronal populations during sleep spindles. J Neurosci. 2013;33(47):18469–80.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Bartho P, Slezia A, Matyas F, Faradzs-Zade L, Ulbert I, Harris KD, et al. Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron. 2014;82(6):1367–79.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Andrillon T, Ni Y, Staba RJ, Ferrarelli F, Cirelli C, Tononi G, et al. Sleep spindles in humans: insights from intracranial EEG and unit recordings. J Neurosci. 2011;31(49):17821–34.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Dehghani N, Cash SS, Halgren E. Emergence of synchronous EEG spindles from asynchronous MEG spindles. Hum Brain Mapp. 2011;32(12):2217–27.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Nakamura M, Uchida S, Maehara T, Kawai K, Hirai N, Nakabayashi T, et al. Sleep spindles in human prefrontal cortex: an electrocorticographic study. Neurosci Res. 2003;45(4):419–27.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Peter-Derex L, Comte JC, Mauguiere F, Salin PA. Density and frequency caudo-rostral gradients of sleep spindles recorded in the human cortex. Sleep. 2012;35(1):69–79.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Dehghani N, Cash SS, Chen CC, Hagler DJ Jr, Huang M, Dale AM, et al. Divergent cortical generators of MEG and EEG during human sleep spindles suggested by distributed source modeling. PLoS One. 2010;5(7):e11454.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Del Felice A, Arcaro C, Storti SF, Fiaschi A, Manganotti P. Electrical source imaging of sleep spindles. Clin EEG Neurosci. 2013;45(3):184–92.CrossRefGoogle Scholar
  36. 36.
    Clemens Z, Mölle M, Eross L, Barsi P, Halasz P, Born J. Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans. Brain. 2007;130(Pt 11):2868–78.PubMedCrossRefGoogle Scholar
  37. 37.
    Anderer P, Klosch G, Gruber G, Trenker E, Pascual-Marqui RD, Zeitlhofer J, et al. Low-resolution brain electromagnetic tomography revealed simultaneously active frontal and parietal sleep spindle sources in the human cortex. Neuroscience. 2001;103(3):581–92.PubMedCrossRefGoogle Scholar
  38. 38.
    Clemens Z, Mölle M, Eross L, Jakus R, Rasonyi G, Halasz P, et al. Fine-tuned coupling between human parahippocampal ripples and sleep spindles. Eur J Neurosci. 2011;33(3):511–20.PubMedCrossRefGoogle Scholar
  39. 39.
    Mölle M, Bergmann TO, Marshall L, Born J. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep. 2011;34(10):1411–21.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Slezia A, Hangya B, Ulbert I, Acsady L. Phase advancement and nucleus-specific timing of thalamocortical activity during slow cortical oscillation. J Neurosci. 2011;31(2):607–17.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hagler DJ Jr, Ulbert I, Wittner L, Eross L, Madsen JR, Devinsky O, et al. Heterogeneous origins of human sleep spindles in different cortical layers. J Neurosci. 2018;38(12):3013–25.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Clawson BC, Durkin J, Aton SJ. Form and function of sleep spindles across the lifespan. Neural Plast. 2016;2016:6936381.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Cox R, Schapiro AC, Manoach DS, Stickgold R. Individual differences in frequency and topography of slow and fast sleep spindles. Front Hum Neurosci. 2017;11:433.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Fogel SM, Smith CT. Learning-dependent changes in sleep spindles and stage 2 sleep. J Sleep Res. 2006;15(3):250–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Gaillard JM, Blois R. Spindle density in sleep of normal subjects. Sleep. 1981;4(4):385–91.PubMedCrossRefGoogle Scholar
  46. 46.
    Gais S, Molle M, Helms K, Born J. Learning-dependent increases in sleep spindle density. J Neurosci. 2002;22(15):6830–4.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Mölle M, Marshall L, Gais S, Born J. Learning increases human electroencephalographic coherence during subsequent slow sleep oscillations. Proc Natl Acad Sci U S A. 2004;101(38):13963–8.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Peters KR, Ray L, Smith V, Smith C. Changes in the density of stage 2 sleep spindles following motor learning in young and older adults. J Sleep Res. 2008;17(1):23–33.PubMedCrossRefGoogle Scholar
  49. 49.
    van Kesteren MT, Rijpkema M, Ruiter DJ, Fernandez G. Retrieval of associative information congruent with prior knowledge is related to increased medial prefrontal activity and connectivity. J Neurosci. 2010;30(47):15888–94.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Wamsley EJ, Tucker MA, Shinn AK, Ono KE, McKinley SK, Ely AV, et al. Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Biol Psychiatry. 2012;71(2):154–61.PubMedCrossRefGoogle Scholar
  51. 51.
    Martin N, Lafortune M, Godbout J, Barakat M, Robillard R, Poirier G, et al. Topography of age-related changes in sleep spindles. Neurobiol Aging. 2013;34(2):468–76.PubMedCrossRefGoogle Scholar
  52. 52.
    Mölle M, Eschenko O, Gais S, Sara SJ, Born J. The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats. Eur J Neurosci. 2009;29(5):1071–81.PubMedCrossRefGoogle Scholar
  53. 53.
    Steriade M. Cellular substrates of brain rhythms. In: Niedermeyer E, Lopes F, editors. Electroencephalography: basic principles, clinical applications, and related fields. Baltimore: William & Wilkins; 1993. p. 27–62.Google Scholar
  54. 54.
    Steriade M, Nunez A, Amzica F. Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci. 1993;13(8):3266–83.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Steriade M, Nunez A, Amzica F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993;13(8):3252–65.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I, et al. Regional slow waves and spindles in human sleep. Neuron. 2011;70(1):153–69.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience. 2006;137(4):1087–106.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Timofeev I, Grenier F, Steriade M. Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc Natl Acad Sci U S A. 2001;98(4):1924–9.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Volgushev M, Chauvette S, Mukovski M, Timofeev I. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations. J Neurosci. 2006;26(21):5665–72.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Huber R, Ghilardi MF, Massimini M, Ferrarelli F, Riedner BA, Peterson MJ, et al. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci. 2006;9(9):1169–76.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Huber R, Ghilardi MF, Massimini M, Tononi G. Local sleep and learning. Nature. 2004;430(6995):78–81.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Krueger JM, Nguyen JT, Dykstra-Aiello CJ, Taishi P. Local sleep. Sleep Med Rev. 2018;43:14–21.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Poskanzer KE, Yuste R. Astrocytes regulate cortical state switching in vivo. Proc Natl Acad Sci U S A. 2016;113(19):E2675–84.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Szabo Z, Heja L, Szalay G, Kekesi O, Furedi A, Szebenyi K, et al. Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo. Sci Rep. 2017;7(1):6018.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Menicucci D, Piarulli A, Debarnot U, d’Ascanio P, Landi A, Gemignani A. Functional structure of spontaneous sleep slow oscillation activity in humans. PLoS One. 2009;4(10):e7601.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, et al. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep. 2007;30(12):1643–57.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010;11(2):114–26.CrossRefPubMedGoogle Scholar
  68. 68.
    Funk CM, Peelman K, Bellesi M, Marshall W, Cirell C, Tononi G. Role of Somatostatin-positive cortical interneurons in the generation of sleep slow waves. J Neurosci. 2017;37(38):9132–48.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Niethard N, Ngo HV, Ehrlich I, Born J. Cortical circuit activity underlying sleep slow oscillations and spindles. Proc Natl Acad Sci U S A. 2018;115(39):E9220–9.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Rasch B, Born J. About sleep’s role in memory. Physiol Rev. 2013;93(2):681–766.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Crunelli V, David F, Lorincz ML, Hughes SW. The thalamocortical network as a single slow wave-generating unit. Curr Opin Neurobiol. 2015;31:72–80.PubMedCrossRefGoogle Scholar
  72. 72.
    Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313(5793):1626–8.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Cox R, Mylonas DS, Manoach DS, Stickgold R. Large-scale structure and individual fingerprints of locally coupled sleep oscillations. Sleep. 2018;41(12).Google Scholar
  74. 74.
    Dang-Vu TT, Bonjean M, Schabus M, Boly M, Darsaud A, Desseilles M, et al. Interplay between spontaneous and induced brain activity during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A. 2011;108(37):15438–43.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ngo HV, Martinetz T, Born J, Molle M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron. 2013;78(3):545–53.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Riedner BA, Hulse BK, Murphy MJ, Ferrarelli F, Tononi G. Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves. Prog Brain Res. 2011;193:201–18.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ruch S, Koenig T, Mathis J, Roth C, Henke K. Word encoding during sleep is suggested by correlations between word-evoked up-states and post-sleep semantic priming. Front Psychol. 2014;5:1319.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Schabus M, Dang-Vu TT, Heib DP, Boly M, Desseilles M, Vandewalle G, et al. The fate of incoming stimuli during NREM sleep is determined by spindles and the phase of the slow oscillation. Front Neurol. 2012;3:40.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Vyazovskiy VV, Faraguna U, Cirelli C, Tononi G. Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity. J Neurophysiol. 2009;101(4):1921–31.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Wilckens KA, Ferrarelli F, Walker MP, Buysse DJ. Slow-wave activity enhancement to improve cognition. Trends Neurosci. 2018;41(7):470–82.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Weigenand A, Molle M, Werner F, Martinetz T, Marshall L. Timing matters: open-loop stimulation does not improve overnight consolidation of word pairs in humans. Eur J Neurosci. 2016;44(6):2357–68.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Binder S, Baier PC, Molle M, Inostroza M, Born J, Marshall L. Sleep enhances memory consolidation in the hippocampus-dependent object-place recognition task in rats. Neurobiol Learn Mem. 2012;97(2):213–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Cox R, Hofman WF, Talamini LM. Involvement of spindles in memory consolidation is slow wave sleep-specific. Learn Mem. 2012;19(7):264–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Bergmann TO, Mölle M, Schmidt MA, Lindner C, Marshall L, Born J, et al. EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation. J Neurosci. 2012;32(1):243–53.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Manganotti P, Formaggio E, Del FA, Storti SF, Zamboni A, Bertoldo A, et al. Time-frequency analysis of short-lasting modulation of EEG induced by TMS during wake, sleep deprivation and sleep. Front Hum Neurosci. 2013;7:767.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Marshall L, Born J. Brain stimulation during sleep. In: Stickgold R, editor. Sleep medicine clinics. Philadelphia: WB Saunders; 2011. p. 85–95.Google Scholar
  87. 87.
    Massimini M, Ferrarelli F, Esser SK, Riedner BA, Huber R, Murphy M, et al. Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci U S A. 2007;104(20):8496–501.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Bergmann TO, Mölle M, Marshall L, Kaya-Yildiz L, Born J, Roman SH. A local signature of LTP- and LTD-like plasticity in human NREM sleep. Eur J Neurosci. 2008;27(9):2241–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Huber R, Maatta S, Esser SK, Sarasso S, Ferrarelli F, Watson A, et al. Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep. J Neurosci. 2008;28(31):7911–8.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Fröhlich F, McCormick DA. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;67(1):129–43.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Liu A, Voroslakos M, Kronberg G, Henin S, Krause MR, Huang Y, et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun. 2018;9:5092.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ali MM, Sellers KK, Frohlich F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci. 2013;33(27):11262–75.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Vosskuhl J, Struber D, Herrmann CS. Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Front Hum Neurosci. 2018;12:211.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Campos-Beltrán D, Marshall L. Electric stimulation to improve memory consolidation during sleep. In: Axmacher N, Rasch B, editors. Cognitive neuroscience of memory consolidation. New York: Springer; 2017. p. 301–12.CrossRefGoogle Scholar
  95. 95.
    Ladenbauer J, Ladenbauer J, Kulzow N, de Boor R, Avramova E, Grittner U, et al. Promoting sleep oscillations and their functional coupling by transcranial stimulation enhances memory consolidation in mild cognitive impairment. J Neurosci. 2017;37(30):7111–24.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Marshall L, Binder S. Contribution of transcranial oscillatory stimulation to research on neural networks: an emphasis on hippocampo-neocortical rhythms. Front Hum Neurosci. 2013;7:614.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Marshall L, Helgadottir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444(7119):610–3.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Voss U, Holzmann R, Tuin I, Hobson JA. Lucid dreaming: a state of consciousness with features of both waking and non-lucid dreaming. Sleep. 2009;32(9):1191–200.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Voss U, Holzmann R, Hobson A, Paulus W, Koppehele-Gossel J, Klimke A, et al. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat Neurosci. 2014;17(6):810–2.PubMedCrossRefGoogle Scholar
  100. 100.
    Berryhill ME, Peterson DJ, Jones KT, Stephens JA. Hits and misses: leveraging tDCS to advance cognitive research. Front Psychol. 2014;5:800.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Koo PC, Molle M, Marshall L. Efficacy of slow oscillatory-transcranial direct current stimulation on EEG and memory—contribution of an inter-individual factor. Eur J Neurosci. 2018;47(7):812–23.PubMedCrossRefGoogle Scholar
  102. 102.
    David F, Schmiedt JT, Taylor HL, Orban G, Di GG, Uebele VN, et al. Essential thalamic contribution to slow waves of natural sleep. J Neurosci. 2013;33(50):19599–610.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Alhola P, Polo-Kantola P. Sleep deprivation: impact on cognitive performance. Neuropsychiatr Dis Treat. 2007;3(5):553–67.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Goel N, Rao H, Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2009;29(4):320–39.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Jenkins JK, Dallenbach KM. Obliviscence during sleep and waking. Am J Phys. 1924;35:605–12.Google Scholar
  106. 106.
    Graves EA. The effect of sleep on retention. J Exp Psychol. 1937;19:316–22.CrossRefGoogle Scholar
  107. 107.
    Newman EB. Forgetting of meaningful material during sleep and waking. Am J Psychol. 1939;52:65–71.CrossRefGoogle Scholar
  108. 108.
    Talamini LM, Nieuwenhuis IL, Takashima A, Jensen O. Sleep directly following learning benefits consolidation of spatial associative memory. Learn Mem. 2008;15(4):233–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Maatta S, Landsness E, Sarasso S, Ferrarelli F, Ferreri F, Ghilardi MF, et al. The effects of morning training on night sleep: a behavioral and EEG study. Brain Res Bull. 2010;82(1–2):118–23.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    McGaugh JL. Memory—a century of consolidation. Science. 2000;287(5451):248–51.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. J Neuropsychiatry Clin Neurosci. 1953;15(4):454–5.CrossRefGoogle Scholar
  112. 112.
    Dement WC, Kleitman N. Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr Clin Neurophysiol. 1957;9(4):673–90.PubMedCrossRefGoogle Scholar
  113. 113.
    Empson JA, Clarke PR. Rapid eye movements and remembering. Nature. 1970;227(5255):287–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Fowler MJ, Sullivan MJ, Ekstrand BR. Sleep and memory. Science. 1973;179(4070):302–4.PubMedCrossRefGoogle Scholar
  115. 115.
    Yaroush R, Sullivan MJ, Ekstrand BR. Effect of sleep on memory. II. Differential effect of the first and second half of the night. J Exp Psychol. 1971;88(3):361–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Cipolli C. Sleep and memory. In: Parmeggiani PL, Velluti RA, editors. The physiologic nature of sleep. London: Imperial College Press; 2005. p. 601–23.CrossRefGoogle Scholar
  117. 117.
    Giuditta A, Ambrosini MV, Montagnese P, Mandile P, Cotugno M, Grassi ZG, et al. The sequential hypothesis of the function of sleep. Behav Brain Res. 1995;69(1–2):157–66.PubMedCrossRefGoogle Scholar
  118. 118.
    Rauchs G, Desgranges B, Foret J, Eustache F. The relationships between memory systems and sleep stages. J Sleep Res. 2005;14(2):123–40.PubMedCrossRefGoogle Scholar
  119. 119.
    Mednick SC, Ca DJ, Shuman T, Anagnostaras S, Wixted JT. An opportunistic theory of cellular and systems consolidation. Trends Neurosci. 2011;34(10):504–14.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Baran B, Pace-Schott EF, Ericson C, Spencer RM. Processing of emotional reactivity and emotional memory over sleep. J Neurosci. 2012;32(3):1035–42.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Groch S, Wilhelm I, Diekelmann S, Born J. The role of REM sleep in the processing of emotional memories: evidence from behavior and event-related potentials. Neurobiol Learn Mem. 2013;99:1–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Menz MM, Rihm JS, Salari N, Born J, Kalisch R, Pape HC, et al. The role of sleep and sleep deprivation in consolidating fear memories. NeuroImage. 2013;75:87–96.PubMedCrossRefGoogle Scholar
  123. 123.
    Nishida M, Pearsall J, Buckner RL, Walker MP. REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex. 2009;19(5):1158–66.PubMedCrossRefGoogle Scholar
  124. 124.
    Wagner U, Gais S, Born J. Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learn Mem. 2001;8(2):112–9.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Datta S, O’Malley MW. Fear extinction memory consolidation requires potentiation of pontine-wave activity during REM sleep. J Neurosci. 2013;33(10):4561–9.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Popa D, Duvarci S, Popescu AT, Lena C, Pare D. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc Natl Acad Sci U S A. 2010;107(14):6516–9.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Genzel L, Spoormaker VI, Konrad BN, Dresler M. The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiol Learn Mem. 2015;122:110–21.PubMedCrossRefGoogle Scholar
  128. 128.
    Totty MS, Chesney LA, Geist PA, Datta S. Sleep-dependent oscillatory synchronization: a role in fear memory consolidation. Front Neural Circuits. 2017;11:49.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Cantero JL, Atienza M, Stickgold R, Kahana MJ, Madsen JR, Kocsis B. Sleep-dependent theta oscillations in the human hippocampus and neocortex. J Neurosci. 2003;23(34):10897–903.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Navarro-Lobato I, Genzel L. The up and down of sleep: from molecules to electrophysiology. Neurobiol Learn Mem. 2019;160:3–10.PubMedCrossRefGoogle Scholar
  131. 131.
    Skelin I, Kilianski S, McNaughton BL. Hippocampal coupling with cortical and subcortical structures in the context of memory consolidation. Neurobiol Learn Mem. 2019;160:21–31.PubMedCrossRefGoogle Scholar
  132. 132.
    Ulrich D. Sleep spindles as facilitators of memory formation and learning. Neural Plast. 2016;2016:1796715.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Eschenko O, Magri C, Panzeri S, Sara SJ. Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. Cereb Cortex. 2012;22(2):426–35.PubMedCrossRefGoogle Scholar
  134. 134.
    Lee MG, Hassani OK, Alonso A, Jones BE. Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci. 2005;25(17):4365–9.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Naji M, Krishnan GP, McDevitt EA, Bazhenov M, Mednick SC. Coupling of autonomic and central events during sleep benefits declarative memory consolidation. Neurobiol Learn Mem. 2018;157:139–50.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Genzel L, Dresler M, Wehrle R, Grozinger M, Steiger A. Slow wave sleep and REM sleep awakenings do not affect sleep dependent memory consolidation. Sleep. 2009;32(3):302–10.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Morgenthaler J, Wiesner CD, Hinze K, Abels LC, Prehn-Kristensen A, Goder R. Selective REM-sleep deprivation does not diminish emotional memory consolidation in young healthy subjects. PLoS One. 2014;9(2):e89849.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Feld GB, Born J. Sculpting memory during sleep: concurrent consolidation and forgetting. Curr Opin Neurobiol. 2017;44:20–7.PubMedCrossRefGoogle Scholar
  139. 139.
    Gupta AS, van der Meer MA, Touretzky DS, Redish AD. Hippocampal replay is not a simple function of experience. Neuron. 2010;65(5):695–705.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Spencer RM. Neurophysiological basis of sleep’s function on memory and cognition. ISRN Physiol. 2013;2013:619319.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Tamminen J, Payne JD, Stickgold R, Wamsley EJ, Gaskell MG. Sleep spindle activity is associated with the integration of new memories and existing knowledge. J Neurosci. 2010;30(43):14356–60.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Hirase H, Leinekugel X, Czurko A, Csicsvari J, Buzsaki G. Firing rates of hippocampal neurons are preserved during subsequent sleep episodes and modified by novel awake experience. Proc Nat. Acad Sci U S A. 2001;98(16):9386–90.CrossRefGoogle Scholar
  143. 143.
    Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science. 1994;265(5172):676–9. [See comments].PubMedCrossRefGoogle Scholar
  144. 144.
    Clemens Z, Fabo D, Halasz P. Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience. 2005;132(2):529–35.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Pugin F, Metz AJ, Wolf M, Achermann P, Jenni OG, Huber R. Local increase of sleep slow wave activity after three weeks of working memory training in children and adolescents. Sleep. 2015;38(4):607–14.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Ramadan W, Eschenko O, Sara SJ. Hippocampal sharp wave/ripples during sleep for consolidation of associative memory. PLoS One. 2009;4(8):e6697.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Schmidt C, Peigneux P, Muto V, Schenkel M, Knoblauch V, Munch M, et al. Encoding difficulty promotes postlearning changes in sleep spindle activity during napping. J Neurosci. 2006;26(35):8976–82.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Buzsaki G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience. 1989;31(3):551–70.PubMedCrossRefGoogle Scholar
  149. 149.
    Buzsaki G, Haas HL, Anderson EG. Long-term potentiation induced by physiologically relevant stimulus patterns. Brain Res. 1987;435(1–2):331–3.PubMedCrossRefGoogle Scholar
  150. 150.
    Marr D. A theory for cerebral neocortex. Proc R Soc Lond B Biol Sci. 1970;76(43):161–234.Google Scholar
  151. 151.
    Marr D. Simple memory: a theory for archicortex. Philos Trans R Soc Lond Ser B Biol Sci. 1971;262(841):23–81.Google Scholar
  152. 152.
    Chrobak JJ, Buzsaki G. High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat. J Neurosci. 1996;16(9):3056–66.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Contreras D, Destexhe A, Steriade M. Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. J Neurophysiol. 1997;78(1):335–50.PubMedCrossRefGoogle Scholar
  154. 154.
    Rosanova M, Ulrich D. Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J Neurosci. 2005;25(41):9398–405.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Sejnowski TJ, Destexhe A. Why do we sleep? Brain Res. 2000;886(1–2):208–23.PubMedCrossRefGoogle Scholar
  156. 156.
    Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993;262(5134):679–85.PubMedCrossRefGoogle Scholar
  157. 157.
    O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993;3(3):317–30.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Lee AK, Wilson MA. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron. 2002;36(6):1183–94.PubMedCrossRefGoogle Scholar
  159. 159.
    Louie K, Wilson MA. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron. 2001;29(1):145–56.PubMedCrossRefGoogle Scholar
  160. 160.
    Nadasdy Z, Hirase H, Czurko A, Csicsvari J, Buzsaki G. Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci. 1999;19(21):9497–507.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Pavlides C, Winson J. Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J Neurosci. 1989;9(8):2907–18.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Skaggs WE, McNaughton BL. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science. 1996;271(5257):1870–3.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Mölle M, Yeshenko O, Marshall L, Sara SJ, Born J. Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep. J Neurophysiol. 2006;96(1):62–70.PubMedCrossRefGoogle Scholar
  164. 164.
    Siapas AG, Wilson MA. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron. 1998;21(5):1123–8.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Sirota A, Csicsvari J, Buhl D, Buzsaki G. Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci U S A. 2003;100(4):2065–9.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Brodt S, Pohlchen D, Flanagin VL, Glasaue S, Gais S, Schonauer M. Rapid and independent memory formation in the parietal cortex. Proc Natl Acad Sci U S A. 2016;113(46):13251–6.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Buhry L, Azizi AH, Cheng S. Reactivation, replay, and preplay: how it might all fit together. Neural Plast. 2011;2011:203462.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Cox R, Hofman WF, de Boer M, Talamini LM. Local sleep spindle modulations in relation to specific memory cues. NeuroImage. 2014;99:103–10.PubMedCrossRefGoogle Scholar
  169. 169.
    Fogel S, Albouy G, King BR, Lungu O, Vien C, Bore A, et al. Reactivation or transformation? Motor memory consolidation associated with cerebral activation time-locked to sleep spindles. PLoS One. 2017;12(4):e0174755.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Oudiette D, Paller KA. Upgrading the sleeping brain with targeted memory reactivation. Trends Cogn Sci. 2013;17(3):142–9.PubMedCrossRefGoogle Scholar
  171. 171.
    Pennartz CM, Lee E, Verheul J, Lipa P, Barnes CA, McNaughton BL. The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples. J Neurosci. 2004;24(29):6446–56.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Rasch B, Born J. Maintaining memories by reactivation. Curr Opin Neurobiol. 2007;17(6):698–703.PubMedCrossRefGoogle Scholar
  173. 173.
    Sadowski JH, Jones MW, Mellor JR. Ripples make waves: binding structured activity and plasticity in hippocampal networks. Neural Plast. 2011;2011:960389.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Plihal W, Born J. Effects of early and late nocturnal sleep on declarative and procedural memory. J Cogn Neurosci. 1997;9(4):534–47.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Schabus M, Gruber G, Parapatics S, Sauter C, Klosch G, Anderer P, et al. Sleep spindles and their significance for declarative memory consolidation. Sleep. 2004;27(8):1479–85.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Meier-Koll A, Bussmann B, Schmidt C, Neuschwander D. Walking through a maze alters the architecture of sleep. Percept Mot Skills. 1999;88(3 Pt 2):1141–59.PubMedCrossRefGoogle Scholar
  177. 177.
    Tamminen J, Lambon Ralph MA, Lewis PA. The role of sleep spindles and slow-wave activity in integrating new information in semantic memory. J Neurosci. 2013;33(39):15376–81.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Wilhelm I, Diekelmann S, Molzow I, Ayoub A, Molle M, Born J. Sleep selectively enhances memory expected to be of future relevance. J Neurosci. 2011;31(5):1563–9.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Schabus M, Hoedlmoser K, Pecherstorfer T, Anderer P, Gruber G, Parapatics S, et al. Interindividual sleep spindle differences and their relation to learning-related enhancements. Brain Res. 2008;1191:127–35.PubMedCrossRefGoogle Scholar
  180. 180.
    Saletin JM, Goldstein AN, Walker MP. The role of sleep in directed forgetting and remembering of human memories. Cereb Cortex. 2011;21(11):2534–41.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Fogel SM, Smith CT, Cote KA. Dissociable learning-dependent changes in REM and non-REM sleep in declarative and procedural memory systems. Behav Brain Res. 2007;180(1):48–61.PubMedCrossRefGoogle Scholar
  182. 182.
    Smith C. Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Med Rev. 2001;5(6):491–506.PubMedCrossRefGoogle Scholar
  183. 183.
    Smith CT, Nixon MR, Nader RS. Posttraining increases in REM sleep intensity implicate REM sleep in memory processing and provide a biological marker of learning potential. Learn Mem. 2004;11(6):714–9.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Miyauchi S, Misaki M, Kan S, Fukunaga T, Koike T. Human brain activity time-locked to rapid eye movements during REM sleep. Exp Brain Res. 2009;192(4):657–67.PubMedCrossRefGoogle Scholar
  185. 185.
    Steriade M, Pare D, Bouhassira D, Deschenes M, Oakson G. Phasic activation of lateral geniculate and perigeniculate thalamic neurons during sleep with ponto-geniculo-occipital waves. J Neurosci. 1989;9(7):2215–29.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Piantoni G, Van Der Werf YD, Jensen O, Van Someren EJ. Memory traces of long-range coordinated oscillations in the sleeping human brain. Hum Brain Mapp. 2015;36(1):67–84.PubMedCrossRefGoogle Scholar
  187. 187.
    Morin A, Doyon J, Dostie V, Barakat M, Hadj TA, Korman M, et al. Motor sequence learning increases sleep spindles and fast frequencies in post-training sleep. Sleep. 2008;31(8):1149–56.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Walker MP. The role of slow wave sleep in memory processing. J Clin Sleep Med. 2009;5(2 Suppl):S20–6.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Spoormaker VI, Czisch M, Maquet P, Jancke L. Large-scale functional brain networks in human non-rapid eye movement sleep: insights from combined electroencephalographic/functional magnetic resonance imaging studies. Philos Trans A Math Phys Eng Sci. 2011;369(1952):3708–29.PubMedCrossRefGoogle Scholar
  190. 190.
    Barakat M, Carrier J, Debas K, Lungu O, Fogel S, Vandewalle G, et al. Sleep spindles predict neural and behavioral changes in motor sequence consolidation. Hum Brain Mapp. 2013;34(11):2918–28.PubMedCrossRefGoogle Scholar
  191. 191.
    Tamaki M, Huang TR, Yotsumoto Y, Hamalainen M, Lin FH, Nanez JE Sr, et al. Enhanced spontaneous oscillations in the supplementary motor area are associated with sleep-dependent offline learning of finger-tapping motor-sequence task. J Neurosci. 2013;33(34):13894–902.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Verleger R, Ros M, Wagner U, Yordanova J, Kolev V. Insights into sleep’s role for insight: studies with the number reduction task. Adv Cogn Psychol. 2013;9(4):160–72.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Sami S, Robertson EM, Miall RC. The time course of task-specific memory consolidation effects in resting state networks. J Neurosci. 2014;34(11):3982–92.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Hanlon EC, Faraguna U, Vyazovskiy VV, Tononi G, Cirelli C. Effects of skilled training on sleep slow wave activity and cortical gene expression in the rat. Sleep. 2009;32(6):719–29.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Fell J, Axmacher N. The role of phase synchronization in memory processes. Nat Rev Neurosci. 2011;12(2):105–18.PubMedCrossRefGoogle Scholar
  196. 196.
    Benchenane K, Tiesinga PH, Battaglia FP. Oscillations in the prefrontal cortex: a gateway to memory and attention. Curr Opin Neurobiol. 2011;21(3):475–85.PubMedCrossRefGoogle Scholar
  197. 197.
    Colgin LL. Oscillations and hippocampal-prefrontal synchrony. Curr Opin Neurobiol. 2011;21(3):467–74.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Girardeau G, Zugaro M. Hippocampal ripples and memory consolidation. Curr Opin Neurobiol. 2011;21(3):452–9.PubMedCrossRefGoogle Scholar
  199. 199.
    Heib DP, Hoedlmoser K, Anderer P, Zeitlhofer J, Gruber G, Klimesch W, et al. Slow oscillation amplitudes and up-state lengths relate to memory improvement. PLoS One. 2013;8(12):e82049.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Ribeiro S. Sleep and plasticity. Pflugers Arch. 2012;463(1):111–20.PubMedCrossRefGoogle Scholar
  201. 201.
    Zovkic IB, Guzman-Karlsson MC, Sweatt JD. Epigenetic regulation of memory formation and maintenance. Learn Mem. 2013;20(2):61–74.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Center for Brain, Behavior and MetabolismInstitute of Experimental and Clinical Pharmacology and Toxicology, University of LübeckLübeckGermany

Personalised recommendations