Advertisement

Neuroimaging of Brain Oscillations During Human Sleep

Chapter
  • 366 Downloads

Abstract

Sleep is not simply a state with a decreased level of consciousness. During sleep, the human brain exhibits a variety of neural activities across sleep stages. Functional neuroimaging studies have investigated these activities and identified their underlying neural networks in different stages of sleep. These studies have characterized neural activations related to major sleep oscillations such as sleep spindles and slow waves during non-rapid-eye-movement (NREM) sleep, as well as ponto-geniculo-occipital (PGO) waves during rapid-eye-movement (REM) sleep. Neuroimaging thus identified structures possibly involved in the generation of phasic brain oscillations and provided insights into their importance in regulating sleep. Most notably, neuroimaging studies showed that neuronal oscillations of sleep regulate the interplay between the sleeping brain and external stimulations. Precisely, spindles preserve sleep by contributing to a gating process during which transmission of external auditory stimuli to the cortex is inhibited. In contrast, slow waves induced by external acoustic cues—K-complexes—are associated with enhanced processing of external information at the level of primary auditory cortex. Finally, recent neuroimaging studies have highlighted the role of spindles in sleep-dependent memory consolidation.

Keywords

Neuroimaging Functional magnetic resonance imaging Positron emission tomography Non-rapid-eye-movement sleep Rapid-eye-movement sleep Spindles Slow oscillations Sensory processing Memory 

References

  1. 1.
    Campbell IG. EEG recording and analysis for sleep research. Curr Protoc Neurosci. 2009;Chapter 10:Unit10.12.Google Scholar
  2. 2.
    Dang-Vu TT, Desseilles M, Peigneux P, Laureys S, Maquet P. Sleep and sleep states: PET activation patterns. In: Squire LR, editor. Encyclopedia of neuroscience, vol. 8. Oxford: Academic Press; 2009. p. 955–61.Google Scholar
  3. 3.
    Maquet P. Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res. 2000;9(3):207–31.PubMedCrossRefGoogle Scholar
  4. 4.
    Maquet P, Dive D, Salmon E, Sadzot B, Franco G, Poirrier R, et al. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method. Brain Res. 1990;513(1):136–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Andersson JL, Onoe H, Hetta J, Lidstrom K, Valind S, Lilja A, et al. Brain networks affected by synchronized sleep visualized by positron emission tomography. J Cereb Blood Flow Metab. 1998;18(7):701–15.PubMedCrossRefGoogle Scholar
  6. 6.
    Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P, et al. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain. 1997;120(Pt 7):1173–97.PubMedCrossRefGoogle Scholar
  7. 7.
    Kajimura N, Uchiyama M, Takayama Y, Uchida S, Uema T, Kato M, et al. Activity of midbrain reticular formation and neocortex during the progression of human non-rapid eye movement sleep. J Neurosci. 1999;19(22):10065–73.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Maquet P, Degueldre C, Delfiore G, Aerts J, Peters JM, Luxen A, et al. Functional neuroanatomy of human slow wave sleep. J Neurosci. 1997;17(8):2807–12.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Nofzinger EA, Buysse DJ, Miewald JM, Meltzer CC, Price JC, Sembrat RC, et al. Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking. Brain. 2002;125(Pt 5):1105–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Maquet P, Laureys S, Peigneux P, Fuchs S, Petiau C, Phillips C, et al. Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci. 2000;3(8):831–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Maquet P, Peters J, Aerts J, Delfiore G, Degueldre C, Luxen A, et al. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature. 1996;383(6596):163–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Maquet P, Ruby P, Maudoux A, Albouy G, Sterpenich V, Dang-Vu T, et al. Human cognition during REM sleep and the activity profile within frontal and parietal cortices: a reappraisal of functional neuroimaging data. Prog Brain Res. 2005;150:219–27.PubMedCrossRefGoogle Scholar
  13. 13.
    Nofzinger EA, Mintun MA, Wiseman M, Kupfer DJ, Moore RY. Forebrain activation in REM sleep: an FDG PET study. Brain Res. 1997;770(1–2):192–201.PubMedCrossRefGoogle Scholar
  14. 14.
    Hofle N, Paus T, Reutens D, Fiset P, Gotman J, Evans AC, et al. Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J Neurosci. 1997;17(12):4800–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Dang-Vu TT, Desseilles M, Laureys S, Degueldre C, Perrin F, Phillips C, et al. Cerebral correlates of delta waves during non-REM sleep revisited. NeuroImage. 2005;28(1):14–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Huster RJ, Debener S, Eichele T, Herrmann CS. Methods for simultaneous EEG-fMRI: an introductory review. J Neurosci. 2012;32(18):6053–60.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Duyn JH. EEG-fMRI methods for the study of brain networks during sleep. Front Neurol. 2012;3:100.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Allen PJ, Josephs O, Turner R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage. 2000;12(2):230–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Leclercq Y, Balteau E, Dang-Vu T, Schabus M, Luxen A, Maquet P, et al. Rejection of pulse related artefact (PRA) from continuous electroencephalographic (EEG) time series recorded during functional magnetic resonance imaging (fMRI) using constraint independent component analysis (cICA). NeuroImage. 2009;44(3):679–91.PubMedCrossRefGoogle Scholar
  20. 20.
    Czisch M, Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Pollmacher T, et al. Functional MRI during sleep: BOLD signal decreases and their electrophysiological correlates. Eur J Neurosci. 2004;20(2):566–74.PubMedCrossRefGoogle Scholar
  21. 21.
    Kaufmann C, Wehrle R, Wetter TC, Holsboer F, Auer DP, Pollmacher T, et al. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain. 2006;129(Pt 3):655–67.PubMedCrossRefGoogle Scholar
  22. 22.
    Cheyne DO. MEG studies of sensorimotor rhythms: a review. Exp Neurol. 2013;245:27–39.PubMedCrossRefGoogle Scholar
  23. 23.
    Iber C, Ancoli-Israel S, Chesson AL, Quan SF. The AASM manual for the scoring of sleep and associated events. Westchester, IL: American Academy of Sleep Medicine; 2007.Google Scholar
  24. 24.
    Amzica F, Steriade M. Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol. 1998;107(2):69–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Steriade M, McCarley RW. Brain control of wakefulness and sleep. New York: Springer; 2005.Google Scholar
  26. 26.
    Steriade M, Domich L, Oakson G, Deschenes M. The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol. 1987;57(1):260–73.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bonjean M, Baker T, Lemieux M, Timofeev I, Sejnowski T, Bazhenov M. Corticothalamic feedback controls sleep spindle duration in vivo. J Neurosci. 2011;1(25):9124–34.CrossRefGoogle Scholar
  28. 28.
    Steriade M, Deschenes M. The thalamus as a neuronal oscillator. Brain Res. 1984;320(1):1–63.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Luthi A. Sleep spindles: where they come from, what they do. Neuroscientist. 2014;20(3):243–56.PubMedCrossRefGoogle Scholar
  30. 30.
    McCormick DA, Bal T. Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci. 1997;20:185–215.PubMedCrossRefGoogle Scholar
  31. 31.
    Timofeev I, Steriade M. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J Neurophysiol. 1996;76(6):4152–68.PubMedCrossRefGoogle Scholar
  32. 32.
    Steriade M, Nunez A, Amzica F. Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci. 1993;13(8):3266–83.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ball GJ, Gloor P, Schaul N. The cortical electromicrophysiology of pathological delta waves in the electroencephalogram of cats. Electroencephalogr Clin Neurophysiol. 1977;43:346–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Connors BW, Gutnick MJ, Prince DA. Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol. 1982;48:1302–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Steriade M, Nunez A, Amzica F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993;13(8):3252–65.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Steriade M. Impact of network activities on neuronal properties in corticothalamic systems. J Neurophysiol. 2001;86(1):1–39.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Achermann P, Borbely AA. Low-frequency (<1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience. 1997;81(1):213–22.PubMedCrossRefGoogle Scholar
  38. 38.
    David F, Schmiedt JT, Taylor HL, Orban G, Di Giovanni G, Uebele VN, et al. Essential thalamic contribution to slow waves of natural sleep. J Neurosci. 2013;33(50):19599–610.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lemieux M, Chen JY, Lonjers P, Bazhenov M, Timofeev I. The impact of cortical deafferentation on the neocortical slow oscillation. J Neurosci. 2014;34(16):5689–703.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Contreras D, Destexhe A, Sejnowski TJ, Steriade M. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science. 1996;274(5288):771–4.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Niethard N, Ngo HV, Ehrlic I, Born J. Cortical circuit activity underlying sleep slow oscillations and spindles. Proc Natl Acad Sci U S A. 2018;115(39):E9220–9.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Latchoumane CV, Ngo HV, Born J, Shin HS. Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron. 2017;95(2):424–35.e6.PubMedCrossRefGoogle Scholar
  43. 43.
    Staresina BP, Bergmann TO, Bonnefond M, van der Meij R, Jensen O, Deuker L, et al. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat Neurosci. 2015;18(11):1679–86.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Buzsaki G. Hippocampal sharp waves: their origin and significance. Brain Res. 1986;398(2):242–52.PubMedCrossRefGoogle Scholar
  45. 45.
    Clemens Z, Molle M, Eross L, Jakus R, Rasonyi G, Halasz P, et al. Fine-tuned coupling between human parahippocampal ripples and sleep spindles. Eur J Neurosci. 2011;33(3):511–20.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    De Gennaro L, Ferrara M. Sleep spindles: an overview. Sleep Med Rev. 2003;7(5):423–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Zeitlhofer J, Gruber G, Anderer P, Asenbaum S, Schimicek P, Saletu B. Topographic distribution of sleep spindles in young healthy subjects. J Sleep Res. 1997;6(3):149–55.PubMedCrossRefGoogle Scholar
  48. 48.
    Schabus M, Hoedlmoser K, Pecherstorfer T, Anderer P, Gruber G, Parapatics S, et al. Interindividual sleep spindle differences and their relation to learning-related enhancements. Brain Res. 2008;1191:127–35.CrossRefPubMedGoogle Scholar
  49. 49.
    Marshall L, Helgadottir H, Molle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444(7119):610–3.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Molle M, Bergmann TO, Marshal L, Born J. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep. 2011;34(10):1411–21.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ngo HV, Martinetz T, Born J, Molle M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron. 2013;78(3):545–53.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G. The sleep slow oscillation as a traveling wave. J Neurosci. 2004;24(31):6862–70.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Murphy M, Riedner BA, Huber R, Massimini M, Ferrarelli F, Tononi G. Source modeling sleep slow waves. Proc Natl Acad Sci U S A. 2009;106(5):1608–13.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Jouvet M, Michel F. [Electromyographic correlations of sleep in the chronic decorticate & mesencephalic cat]. C R Seances Soc Biol Fil. 1959;153(3):422–5. [French].Google Scholar
  55. 55.
    Mikiten T, Niebyl P, Hendley C. EEG desynchronization during behavioural sleep associated with spike discharges from the thalamus of the cat. Fed Proc. 1961;20:327.Google Scholar
  56. 56.
    Mouret J, Jeannerod M, Jouvet M. [Electrical activity of the visual system during the paradoxical phase of sleep in the cat.]. J Physiol (Paris). 1963;55:305–6. [French].Google Scholar
  57. 57.
    Callaway CW, Lydic R, Baghdoyan HA, Hobson JA. Pontogeniculooccipital waves: spontaneous visual system activity during rapid eye movement sleep. Cell Mol Neurobiol. 1987;7(2):105–49.PubMedCrossRefGoogle Scholar
  58. 58.
    Datta S, Hobson JA. Neuronal activity in the caudolateral peribrachial pons: relationship to PGO waves and rapid eye movements. J Neurophysiol. 1994;71(1):95–109.PubMedCrossRefGoogle Scholar
  59. 59.
    Datta S, Hobson JA. Suppression of ponto-geniculo-occipital waves by neurotoxic lesions of pontine caudo-lateral peribrachial cells. Neuroscience. 1995;67(3):703–12.PubMedCrossRefGoogle Scholar
  60. 60.
    Datta S. Cellular basis of pontine ponto-geniculo-occipital wave generation and modulation. Cell Mol Neurobiol. 1997;17(3):341–65.PubMedCrossRefGoogle Scholar
  61. 61.
    Datta S. PGO wave generation: mechanism and functional significance. In: Mallick BN, Inoue S, editors. Rapid eye movement sleep. New Delhi: Narosa Publishing House; 1999. p. 91–106.Google Scholar
  62. 62.
    Datta S. Avoidance task training potentiates phasic pontine-wave density in the rat: a mechanism for sleep-dependent plasticity. J Neurosci. 2000;20(22):8607–13.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mavanji V, Datta S. Activation of the phasic pontine-wave generator enhances improvement of learning performance: a mechanism for sleep-dependent plasticity. Eur J Neurosci. 2003;17(2):359–70.PubMedCrossRefGoogle Scholar
  64. 64.
    Davenne D, Adrien J. Suppression of PGO waves in the kitten: anatomical effects on the lateral geniculate nucleus. Neurosci Lett. 1984;45(1):33–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Davenne D, Fregnac Y, Imbert M, Adrien J. Lesion of the PGO pathways in the kitten. II. Impairment of physiological and morphological maturation of the lateral geniculate nucleus. Brain Res. 1989;485(2):267–77.PubMedCrossRefGoogle Scholar
  66. 66.
    Shaffery JP, Roffwarg HP, Speciale SG, Marks GA. Ponto-geniculo-occipital-wave suppression amplifies lateral geniculate nucleus cell-size changes in monocularly deprived kittens. Brain Res Dev Brain Res. 1999;114(1):109–19.PubMedCrossRefGoogle Scholar
  67. 67.
    Bowker RM, Morrison AR. The startle reflex and PGO spikes. Brain Res. 1976;102(1):185–90.PubMedCrossRefGoogle Scholar
  68. 68.
    Nelson JP, McCarley RW, Hobson JA. REM sleep burst neurons, PGO waves, and eye movement information. J Neurophysiol. 1983;50(4):784–97.PubMedCrossRefGoogle Scholar
  69. 69.
    Amzica F, Steriade M. Progressive cortical synchronization of ponto-geniculo-occipital potentials during rapid eye movement sleep. Neuroscience. 1996;72(2):309–14.PubMedCrossRefGoogle Scholar
  70. 70.
    Salzarule P, Liary GC, Bancaud J, Munari C, Barros-Ferreira MD, Chodkiewicz JP, et al. Direct depth recording of the striate cortex during REM sleep in man: are there PGO potentials? Electroencephalogr Clin Neurophysiol. 1975;38(2):199–202.PubMedCrossRefGoogle Scholar
  71. 71.
    McCarley RW, Winkelman JW, Duffy FH. Human cerebral potentials associated with REM sleep rapid eye movements: links to PGO waves and waking potentials. Brain Res. 1983;274(2):359–64.PubMedCrossRefGoogle Scholar
  72. 72.
    Gais S, Molle M, Helms K, Born J. Learning-dependent increases in sleep spindle density. J Neurosci. 2002;22(15):6830–4.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Schabus M, Dang-Vu TT, Albouy G, Balteau E, Boly M, Carrier J, et al. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A. 2007;104(32):13164–9.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Schabus M, Gruber G, Parapatics S, Sauter C, Klosch G, Anderer P, et al. Sleep spindles and their significance for declarative memory consolidation. Sleep. 2004;27(8):1479–85.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Andrade KC, Spoormaker VI, Dresler M, Wehrle R, Holsboer F, Samann PG, et al. Sleep spindles and hippocampal functional connectivity in human NREM sleep. J Neurosci. 2011;31(28):10331–9.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Barakat M, Doyon J, Debas K, Vandewalle G, Morin A, Poirier G, et al. Fast and slow spindle involvement in the consolidation of a new motor sequence. Behav Brain Res. 2011;217(1):117–21.PubMedCrossRefGoogle Scholar
  77. 77.
    Milner CE, Fogel SM, Cote KA. Habitual napping moderates motor performance improvements following a short daytime nap. Biol Psychol. 2006;73(2):141–56.PubMedCrossRefGoogle Scholar
  78. 78.
    Tamaki M, Matsuoka T, Nittono H, Hori T. Fast sleep spindle (13-15 Hz) activity correlates with sleep-dependent improvement in visuomotor performance. Sleep. 2008;31(2):204–11.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Urakami Y. Relationships between sleep spindles and activities of cerebral cortex as determined by simultaneous EEG and MEG recording. J Clin Neurophysiol. 2008;25(1):13–24.PubMedCrossRefGoogle Scholar
  80. 80.
    Saletin JM, van der Helm E, Walker MP. Structural brain correlates of human sleep oscillations. NeuroImage. 2013;83:658–68.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Dang-Vu TT, Bonjean M, Schabus M, Boly M, Darsaud A, Desseilles M, et al. Interplay between spontaneous and induced brain activity during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A. 2011;108(37):15438–43.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Dang-Vu TT, McKinney SM, Buxton OM, Solet JM, Ellenbogen JM. Spontaneous brain rhythms predict sleep stability in the face of noise. Curr Biol. 2010;20(15):R626–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Rasch B, Born J. About sleep’s role in memory. Physiol Rev. 2013;93(2):681–766.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kurth S, Ringli M, Geiger A, LeBourgeois M, Jenni OG, Huber R. Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study. J Neurosci. 2010;30(40):13211–9.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Blethyn KL, Hughes SW, Toth TI, Cope DW, Crunelli V. Neuronal basis of the slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. J Neurosci. 2006;26(9):2474–86.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Finelli LA, Borbely AA, Achermann P. Functional topography of the human nonREM sleep electroencephalogram. Eur J Neurosci. 2001;13(12):2282–90.PubMedCrossRefGoogle Scholar
  87. 87.
    Happe S, Anderer P, Gruber G, Klosch G, Saletu B, Zeitlhofer J. Scalp topography of the spontaneous K-complex and of delta-waves in human sleep. Brain Topogr. 2002;15(1):43–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Dang-Vu TT, Schabus M, Desseilles M, Albouy G, Boly M, Darsaud A, et al. Spontaneous neural activity during human slow wave sleep. Proc Natl Acad Sci U S A. 2008;105(39):15160–5.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Eschenko O, Magri C, Panzeri S, Sara SJ. Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. Cereb Cortex. 2012;22(2):426–35.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, et al. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep. 2007;30(12):1643–57.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Esser SK, Hill SL, Tononi G. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep. 2007;30(12):1617–30.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Peigneux P, Laureys S, Fuchs S, Delbeuck X, Degueldre C, Aerts J, et al. Generation of rapid eye movements during paradoxical sleep in humans. NeuroImage. 2001;14(3):701–8.CrossRefPubMedGoogle Scholar
  93. 93.
    Wehrle R, Czisch M, Kaufmann C, Wetter TC, Holsboer F, Auer DP, et al. Rapid eye movement-related brain activation in human sleep: a functional magnetic resonance imaging study. Neuroreport. 2005;16(8):853–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Miyauchi S, Misaki M, Kan S, Fukunaga T, Koike T. Human brain activity time-locked to rapid eye movements during REM sleep. Exp Brain Res. 2009;192(4):657–67.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Lim AS, Lozano AM, Moro E, Hamani C, Hutchison WD, Dostrovsky JO, et al. Characterization of REM-sleep associated ponto-geniculo-occipital waves in the human pons. Sleep. 2007;30(7):823–7.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Fernandez-Mendoza J, Lozano B, Seijo F, Santamarta-Liebana E, Ramos-Platon MJ, Vela-Bueno A, et al. Evidence of subthalamic PGO-like waves during REM sleep in humans: a deep brain polysomnographic study. Sleep. 2009;32(9):1117–26.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Andrillon T, Nir Y, Cirelli C, Tononi G, Fried I. Single-neuron activity and eye movements during human REM sleep and awake vision. Nat Commun. 2015;6:7884.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Portas CM, Krakow K, Allen P, Josephs O, Armony JL, Frith CD. Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron. 2000;28(3):991–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Czisch M, Wehrle R, Stiegler A, Peters H, Andrade K, Holsboer F, et al. Acoustic oddball during NREM sleep: a combined EEG/fMRI study. PLoS One. 2009;4(8):e6749.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Czisch M, Wetter TC, Kaufmann C, Pollmacher T, Holsboer F, Auer DP. Altered processing of acoustic stimuli during sleep: reduced auditory activation and visual deactivation detected by a combined fMRI/EEG study. NeuroImage. 2002;16(1):251–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Born AP, Law I, Lund TE, Rostrup E, Hanson LG, Wildschiodtz G, et al. Cortical deactivation induced by visual stimulation in human slow-wave sleep. NeuroImage. 2002;17(3):1325–35.PubMedCrossRefGoogle Scholar
  102. 102.
    Arieli A, Sterkin A, Grinvald A, Aertsen A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science. 1996;273(5283):1868–71.PubMedCrossRefGoogle Scholar
  103. 103.
    Boly M, Balteau E, Schnakers C, Degueldre C, Moonen G, Luxen A, et al. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci U S A. 2007;104(29):12187–92.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Cote KA, Epps TM, Campbell KB. The role of the spindle in human information processing of high-intensity stimuli during sleep. J Sleep Res. 2000;9(1):19–26.PubMedCrossRefGoogle Scholar
  105. 105.
    Elton M, Winter O, Heslenfeld D, Loewy D, Campbell K, Kok A. Event-related potentials to tones in the absence and presence of sleep spindles. J Sleep Res. 1997;6(2):78–83.PubMedCrossRefGoogle Scholar
  106. 106.
    Massimini M, Rosanova M, Mariotti M. EEG slow (approximately 1 Hz) waves are associated with nonstationarity of thalamo-cortical sensory processing in the sleeping human. J Neurophysiol. 2003;89(3):1205–13.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Blume C, Del Giudice R, Lechinger J, Wislowska M, Heib DPJ, Hoedlmoser K, et al. Preferential processing of emotionally and self-relevant stimuli persists in unconscious N2 sleep. Brain Lang. 2017;167:72–82.PubMedCrossRefGoogle Scholar
  108. 108.
    Blume C, Del Giudice R, Wislowska M, Heib DPJ, Schabus M. Standing sentinel during human sleep: continued evaluation of environmental stimuli in the absence of consciousness. NeuroImage. 2018;178:638–48.PubMedCrossRefGoogle Scholar
  109. 109.
    Colrain IM. The K-complex: a 7-decade history. Sleep. 2005;28(2):255–73.PubMedCrossRefGoogle Scholar
  110. 110.
    Schabus M, Dang-Vu TT, Heib DP, Boly M, Desseilles M, Vandewalle G, et al. The fate of incoming stimuli during NREM sleep is determined by spindles and the phase of the slow oscillation. Front Neurol. 2012;3:40.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Auer DP, Pollmacher T, et al. Functional microstates within human REM sleep: first evidence from fMRI of a thalamocortical network specific for phasic REM periods. Eur J Neurosci. 2007;25(3):863–71.PubMedCrossRefGoogle Scholar
  112. 112.
    Ong JL, Lo JC, Chee NI, Santostasi G, Paller KA, Zee PC, et al. Effects of phase-locked acoustic stimulation during a nap on EEG spectra and declarative memory consolidation. Sleep Med. 2016;20:88–97.PubMedCrossRefGoogle Scholar
  113. 113.
    Santostasi G, Malkani R, Riedner B, Bellesi M, Tononi G, Paller KA, et al. Phase-locked loop for precisely timed acoustic stimulation during sleep. J Neurosci Methods. 2016;259:101–14.PubMedCrossRefGoogle Scholar
  114. 114.
    Maquet P. The role of sleep in learning and memory. Science. 2001;294(5544):1048–52.PubMedCrossRefGoogle Scholar
  115. 115.
    Sejnowski TJ, Destexhe A. Why do we sleep? Brain Res. 2000;886(1–2):208–23.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Fowler MJ, Sullivan MJ, Ekstrand BR. Sleep and memory. Science. 1973;179(70):302–4.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Rauchs G, Desgranges B, Foret J, Eustache F. The relationships between memory systems and sleep stages. J Sleep Res. 2005;14(2):123–40.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Smith C. Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Med Rev. 2001;5(6):491–506.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Holz J, Piosczyk H, Feige B, Spiegelhalder K, Baglioni C, Riemann D, et al. EEG sigma and slow-wave activity during NREM sleep correlate with overnight declarative and procedural memory consolidation. J Sleep Res. 2012;21(6):612–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Rasch B, Pommer J, Diekelmann S, Born J. Pharmacological REM sleep suppression paradoxically improves rather than impairs skill memory. Nat Neurosci. 2009;12(4):396–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Marshall L, Cross N, Binder S, Dang-Vu TT. Brain rhythms during sleep and memory consolidation: neurobiological insights. https://doi.org/10.1152/physiol.00004.2019.PubMedCrossRefGoogle Scholar
  122. 122.
    Born J, Wilhelm I. System consolidation of memory during sleep. Psychol Res. 2012;76(2):192–203.PubMedCrossRefGoogle Scholar
  123. 123.
    Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010;11(2):114–26.CrossRefPubMedGoogle Scholar
  124. 124.
    Hennies N, Lambon Ralph MA, Kempkes M, Cousins JN, Lewis PA. Sleep spindle density predicts the effect of prior knowledge on memory consolidation. J Neurosci. 2016;36(13):3799–810.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Tamminen J, Payne JD, Stickgold R, Wamsley EJ, Gaskell MG. Sleep spindle activity is associated with the integration of new memories and existing knowledge. J Neurosci. 2010;30(43):14356–60.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Skaggs WE, McNaughton BL. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science. 1996;271(5257):1870–3.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science. 1994;265(5172):676–9.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Peigneux P, Laureys S, Fuchs S, Collette F, Perrin F, Reggers J, et al. Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron. 2004;44(3):535–45.PubMedCrossRefGoogle Scholar
  129. 129.
    Yotsumoto Y, Sasaki Y, Chan P, Vasios CE, Bonmassar G, Ito N, et al. Location-specific cortical activation changes during sleep after training for perceptual learning. Curr Biol. 2009;19(15):1278–82.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Clemens Z, Fabo D, Halasz P. Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience. 2005;132(2):529–35.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Clemens Z, Fabo D, Halasz P. Twenty-four hours retention of visuospatial memory correlates with the number of parietal sleep spindles. Neurosci Lett. 2006;403(1–2):52–6.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Cox R, Hofman WF, Talamini LM. Involvement of spindles in memory consolidation is slow wave sleep-specific. Learn Mem. 2012;19(7):264–7.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Eschenko O, Molle M, Born J, Sara SJ. Elevated sleep spindle density after learning or after retrieval in rats. J Neurosci. 2006;26(50):12914–20.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Fogel SM, Smith CT. Learning-dependent changes in sleep spindles and stage 2 sleep. J Sleep Res. 2006;15(3):250–5.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Fogel SM, Smith CT, Cote KA. Dissociable learning-dependent changes in REM and non-REM sleep in declarative and procedural memory systems. Behav Brain Res. 2007;180(1):48–61.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Laventure S, Fogel S, Lungu O, Albouy G, Sevigny-Dupont P, Vien C, et al. NREM2 and sleep spindles are instrumental to the consolidation of motor sequence memories. PLoS Biol. 2016;14(3):e1002429.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Morin A, Doyon J, Dostie V, Barakat M, Hadj Tahar A, Korman M, et al. Motor sequence learning increases sleep spindles and fast frequencies in post-training sleep. Sleep. 2008;31(8):1149–56.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Nishida M, Walker MP. Daytime naps, motor memory consolidation and regionally specific sleep spindles. PLoS One. 2007;2(4):e341.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Peters KR, Smith V, Smith CT. Changes in sleep architecture following motor learning depend on initial skill level. J Cogn Neurosci. 2007;19(5):817–29.PubMedCrossRefGoogle Scholar
  140. 140.
    Schmidt C, Peigneux P, Muto V, Schenkel M, Knoblauch V, Munch M, et al. Encoding difficulty promotes postlearning changes in sleep spindle activity during napping. J Neurosci. 2006;26(35):8976–82.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Bergmann TO, Molle M, Diedrichs J, Born J, Siebner HR. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations. NeuroImage. 2012;59(3):2733–42.PubMedCrossRefGoogle Scholar
  142. 142.
    Jegou A, Schabus M, Gosseries O, Dahmen B, Albouy G, Desseilles M, et al. Cortical reactivations during sleep spindles following declarative learning. NeuroImage. 2019;195:104–12.PubMedCrossRefGoogle Scholar
  143. 143.
    Molle M, Eschenko O, Gais S, Sara SJ, Born J. The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats. Eur J Neurosci. 2009;29(5):1071–81.PubMedCrossRefGoogle Scholar
  144. 144.
    Molle M, Marshall L, Gais S, Born J. Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci. 2002;22(24):10941–7.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Rosanova M, Ulrich D. Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J Neurosci. 2005;25(41):9398–405.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Sirota A, Csicsvari J, Buhl D, Buzsaki G. Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci U S A. 2003;100(4):2065–9.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Boutin A, Pinsard B, Bore A, Carrier J, Fogel SM, Doyon J. Transient synchronization of hippocampo-striato-thalamo-cortical networks during sleep spindle oscillations induces motor memory consolidation. NeuroImage. 2018;169:419–30.PubMedCrossRefGoogle Scholar
  148. 148.
    Fogel S, Albouy G, King BR, Lungu O, Vien C, Bore A, et al. Reactivation or transformation? Motor memory consolidation associated with cerebral activation time-locked to sleep spindles. PLoS One. 2017;12(4):e0174755.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Vahdat S, Fogel S, Benali H, Doyon J. Network-wide reorganization of procedural memory during NREM sleep revealed by fMRI. Elife. 2017; 6.pii:e24987.Google Scholar
  150. 150.
    Sasaki Y, Nanez JE, Watanabe T. Advances in visual perceptual learning and plasticity. Nat Rev Neurosci. 2010;11(1):53–60.PubMedCrossRefGoogle Scholar
  151. 151.
    Gais S, Plihal W, Wagner U, Born J. Early sleep triggers memory for early visual discrimination skills. Nat Neurosci. 2000;3(12):1335–9.CrossRefPubMedGoogle Scholar
  152. 152.
    Karni A, Sagi D. The time course of learning a visual skill. Nature. 1993;365(6443):250–2.PubMedCrossRefGoogle Scholar
  153. 153.
    Stickgold R, Whidbee D, Schirmer B, Patel V, Hobson JA. Visual discrimination task improvement: a multi-step process occurring during sleep. J Cogn Neurosci. 2000;12(2):246–54.CrossRefPubMedGoogle Scholar
  154. 154.
    Bang JW, Khalilzadeh O, Hamalainen M, Watanabe T, Sasaki Y. Location specific sleep spindle activity in the early visual areas and perceptual learning. Vis Res. 2014;99:162–71.PubMedCrossRefGoogle Scholar
  155. 155.
    Ackermann S, Rasch B. Differential effects of non-REM and REM sleep on memory consolidation? Curr Neurol Neurosci Rep. 2014;14(2):430.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Faculty of MedicineMcGill UniversityMontrealCanada
  2. 2.Department of HealthKinesiology and Applied Physiology, Center for Studies in Behavioral Neurobiology and PERFORM Center, Concordia UniversityMontrealCanada
  3. 3.Centre de Recherche de l’Institut Universitaire de Gériatrie de MontréalCIUSSS Centre-Sud-de-l’île-de-MontréalMontrealCanada
  4. 4.Family MedicineSt. Michael’s HospitalTorontoCanada
  5. 5.Center for Advanced Research in Sleep MedicineHôpital du Sacré-Coeur de MontréalMontrealCanada

Personalised recommendations