Advertisement

Cellular Mechanisms of Thalamocortical Oscillations in the Sleeping Brain

Chapter

Abstract

Oscillatory activity is an emerging property of the thalamocortical system. The patterns and dominant frequencies of these oscillations depend on the brain’s functional state. Normal oscillatory activities include slow (0.1–15 Hz, present mainly during slow-wave sleep or anesthesia), fast (20–60 Hz), and ultrafast (100–600 Hz) activities. The fast and ultrafast activities are present in various states of vigilance and frequently coexist with slower rhythms. Pathological oscillations within the thalamocortical system take place in a form of electrographic seizures. Thus, the same brain network in different conditions generates diverse forms of oscillations. Each oscillation is generated by a particular set of intrinsic neuronal currents, synaptic interactions, and extracellular factors. Little is known about the functional roles of neural oscillations, although neural rhythms are believed to serve important roles, such as the coordination of activity between regions of the nervous system during wakefulness, or the facilitation of memory consolidation during sleep. Slow oscillatory activities—either normal or paroxysmal—are usually associated with a loss of conscious perception. A number of recent studies suggest that slow brain rhythms during sleep mediate the processes of synaptic plasticity and thus could contribute to the memory formation. Faster oscillatory activities are associated with cognitive processes and are involved in the transmission of information in thalamocortical pathways.

This chapter provides: (a) a brief description of thalamocortical network architecture; (b) a brief description of intrinsic and synaptic currents contributing to the generation of oscillations in the thalamocortical system; (c) a classification, description, and mechanisms of the main sleep oscillations generated within the thalamocortical system: slow-wave oscillation, delta, and spindles; and lastly (d) a brief description of functional role of various oscillations generated by the thalamocortical system. We present an extensive review of the literature as well as some new original observations on the cellular mechanisms of the thalamocortical oscillations in the sleeping brain. A synthesis of the current knowledge on the functional role of those landmark sleep oscillations reinforces the view of their critical role in synaptic plasticity that affects memory consolidation, a topic that extends beyond the realm of sleep medicine, given its paramount importance in neurological and societal aspects.

Keywords

Sleep Wake Thalamus Cortex Oscillations Plasticity 

Notes

Acknowledgements

This study was supported by the Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Foundation for Innovation (CFI), the US National Institute of Biomedical Imaging and Bioengineering (NIBIB), the US National Institute of Mental Health (NIMH), and the US Office of Naval Research (MURI program).

References

  1. 1.
    Jones EG. Synchrony in the interconnected circuitry of the thalamus and cerebral cortex. Ann N Y Acad Sci. 2009;1157:10–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Constantinople CM, Bruno RM. Deep cortical layers are activated directly by thalamus. Science. 2013;340:1591–4.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Deschenes M, Bourassa J, Pinault D. Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res. 1994;664:215–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Bourassa J, Pinault D, Deschenes M. Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur J Neurosci. 1995;7:19–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Scheibel ME, Scheibel AB. The organization of the nucleus reticularis thalami: a Golgi study. Brain Res. 1966;1:43–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Yen C, Conley M, Hendry S, Jones E. The morphology of physiologically identified GABAergic neurons in the somatic sensory part of the thalamic reticular nucleus in the cat. J Neurosci. 1985;5:2254–68.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Liu XB, Warren RA, Jones EG. Synaptic distribution of afferents from reticular nucleus in ventroposterior nucleus of cat thalamus. J Comp Neurol. 1995;352:187–202.PubMedCrossRefGoogle Scholar
  8. 8.
    Barthó P, Freund TF, Acsady L. Selective GABAergic innervation of thalamic nuclei from zona incerta. Eur J Neurosci. 2002;16:999–1014.PubMedCrossRefGoogle Scholar
  9. 9.
    Trageser JC, Keller A. Reducing the uncertainty: gating of peripheral inputs by zona incerta. J Neurosci. 2004;24:8911–5.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sheroziya M, Timofeev I. Global intracellular slow-wave dynamics of the thalamocortical system. J Neurosci. 2014;34:8875–93.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Mitrofanis J. Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta. Neuroscience. 2005;130:1–15.PubMedCrossRefGoogle Scholar
  12. 12.
    Urbain N, Deschênes M. Motor cortex gates vibrissal responses in a thalamocortical projection pathway. Neuron. 2007;56:714–25.PubMedCrossRefGoogle Scholar
  13. 13.
    Liu XB, Honda CN, Jones EG. Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat. J Comp Neurol. 1995;352:69–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Sherman SM, Guillery RW. On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proc Nat Acad Sci U S A. 1998;95:7121–6.CrossRefGoogle Scholar
  15. 15.
    Sherman SM, Guillery RW. Functional organization of thalamocortical relays. J Neurophysiol. 1996;76:1367–95.PubMedCrossRefGoogle Scholar
  16. 16.
    Groh A, de Kock CPJ, Wimmer VC, Sakmann B, Kuner T. Driver or coincidence detector: modal switch of a corticothalamic giant synapse controlled by spontaneous activity and short-term depression. J Neurosci. 2008;28:9652–63.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Steriade M, Jones EG, McCormick DA. Thalamus: organization and function. Oxford: Elsevier Science; 1997.Google Scholar
  18. 18.
    Zomorrodi R, Ferecskó AS, Kovács K, Kröger H, Timofeev I. Analysis of morphological features of thalamocortical neurons from the ventroposterolateral nucleus of the cat. J Comp Neurol. 2010;518:3541–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Rall W. Core conductor theory and cable properties of neurons. In: Kandel ER, editor. Handbook of physiology. Bethesda, MD: American Physiological Society; 1977. p. 39–97.Google Scholar
  20. 20.
    Bloomfield SA, Hamos JE, Sherman SM. Passive cable properties and morphological correlates of neurones in the lateral geniculate nucleus of the cat. J Physiol. 1987;383:653–92.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lajeunesse F, Kröger H, Timofeev I. Regulation of AMPA and NMDA receptor-mediated EPSPs in dendritic trees of thalamocortical cells. J Neurophysiol. 2013;109:13–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Timofeev I, Bazhenov M. Mechanisms and biological role of thalamocortical oscillations. In: Columbus F, editor. Trends in chronobiology research. New York: Nova Science Publishers; 2005. p. 1–47.Google Scholar
  23. 23.
    Baillarger J. Recherches sur la structure de la couche corticale des circonvolutions du cerveau. Mémoires de l’Académie Royale de Médecine, Paris. 1840;8:149–83. French.Google Scholar
  24. 24.
    White EL. Cortical circuits: synaptic organization of the cerebral cortex. Structure, function, and theory. Boston: Birkhäuser; 1989.CrossRefGoogle Scholar
  25. 25.
    Mountcastle VB. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol. 1957;20:408–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Rockel AJ, Hiorns RW, Powell TP. The basic uniformity in structure of the neocortex. Brain. 1980;103:221–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Mountcastle VB. The columnar organization of the neocortex. Brain. 1997;120:701–22.PubMedCrossRefGoogle Scholar
  28. 28.
    Jones EG. Microcolumns in the cerebral cortex. Proc Natl Acad Sci U S A. 2000;97:5019–21.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kozloski J, Hamzei-Sichani F, Yuste R. Stereotyped position of local synaptic targets in neocortex. Science. 2001;293:868–72.PubMedCrossRefGoogle Scholar
  30. 30.
    Silberberg G, Gupta A, Markram H. Stereotypy in neocortical microcircuits. Trends Neurosci. 2002;25:227–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Herculano-Houzel S, Collins CE, Wong P, Kaas JH, Lent R. The basic nonuniformity of the cerebral cortex. Proc Natl Acad Sci U S A. 2008;105:12593–8.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Contreras D, Llinas R. Voltage-sensitive dye imaging of neocortical spatiotemporal dynamics to afferent activation frequency. J Neurosci. 2001;21:9403–13.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Thomson AM, Bannister AP. Interlaminar connections in the neocortex. Cereb Cortex. 2003;13:5–14.PubMedCrossRefGoogle Scholar
  34. 34.
    Peters A, Payne BR. Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb Cortex. 1993;3:69–78.PubMedCrossRefGoogle Scholar
  35. 35.
    Ahmed B, Anderson JC, Douglas RJ, Martin KA, Nelson JC. Polyneuronal innervation of spiny stellate neurons in cat visual cortex. J Comp Neurol. 1994;341:39–49.PubMedCrossRefGoogle Scholar
  36. 36.
    Cragg BG. The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J Anat. 1967;101:639–54.PubMedPubMedCentralGoogle Scholar
  37. 37.
    DeFelipe J, Farinas I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol. 1992;39:563–607.PubMedCrossRefGoogle Scholar
  38. 38.
    Mountcastle VB. Perceptual neuroscience: the cerebral cortex. Cambridge, Massachusetts, and London, England: Harvard University Press; 1998.Google Scholar
  39. 39.
    Somogyi P, Tamás G, Lujan R, Buhl EH. Salient features of synaptic organisation in the cerebral cortex. Brain Res Rev. 1998;26:113–35.PubMedCrossRefGoogle Scholar
  40. 40.
    Szentagothai J. The use of degeneration methods in the investigation of short neuronal connections. In: Singer M, Schadé P, editors. Degeneration patterns in the nervous system, progress in brain research. Amsterdam: Elsevier; 1965. p. 1–32.Google Scholar
  41. 41.
    Gruner JE, Hirsch JC, Sotelo C. Ultrastructural features of the isolated suprasylvian gyrus in the cat. J Comp Neurol. 1974;154:1–27.PubMedCrossRefGoogle Scholar
  42. 42.
    Spencer WA, Kandel ER. Electrophysiology of hippocampal neurons IV. Fast prepotentials. J Neurophysiol. 1961;24:272–85.PubMedCrossRefGoogle Scholar
  43. 43.
    Wong RK, Prince DA, Basbaum AI. Intradendritic recordings from hippocampal neurons. Proc Natl Acad Sci U S A. 1979;76:986–90.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Benardo LS, Masukawa LM, Prince DA. Electrophysiology of isolated hippocampal pyramidal dendrites. J Neurosci. 1982;2:1614–22.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Llinás RR. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988;242:1654–64.PubMedCrossRefGoogle Scholar
  46. 46.
    Turner RW, Meyers DE, Richardson TL, Barker JL. The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons. J Neurosci. 1991;11:2270–80.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Amitai Y, Friedman A, Connors BW, Gutnick MJ. Regenerative activity in apical dendrites of pyramidal cells in neocortex. Cereb Cortex. 1993;3:26–38.PubMedCrossRefGoogle Scholar
  48. 48.
    Magee JC, Johnston D. Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science. 1995;268:301–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Schwindt PC, Crill WE. Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J Neurophysiol. 1995;74:2220–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Crill WE. Persistent sodium current in mammalian central neurons. Annu Rev Physiol. 1996;58:349–62.PubMedCrossRefGoogle Scholar
  51. 51.
    Huguenard JR. Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol. 1996;58:329–48.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Pape HC. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol. 1996;58:299–327.PubMedCrossRefGoogle Scholar
  53. 53.
    Larkum ME, Zhu JJ. Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. J Neurosci. 2002;22:6991–7005.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Markram H, Lubke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science. 1997;275:213–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Azouz R, Gray CM. Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proc Natl Acad Sci U S A. 2000;97:8110–5.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Palva JM, Lamsa K, Lauri SE, Rauvala H, Kaila K, Taira T. Fast network oscillations in the newborn rat hippocampus in vitro. J Neurosci. 2000;20:1170–8.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wang SS, Denk W, Hausser M. Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci. 2000;3:1266–73.PubMedCrossRefGoogle Scholar
  58. 58.
    Stuart GJ, Hausser M. Dendritic coincidence detection of EPSPs and action potentials. Nat Neurosci. 2001;4:63–71.PubMedCrossRefGoogle Scholar
  59. 59.
    Borg-Graham LJ, Monier C, Fregnac Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature. 1998;393:369–73.PubMedCrossRefGoogle Scholar
  60. 60.
    Hirsch JA, Alonso JM, Reid RC, Martinez LM. Synaptic integration in striate cortical simple cells. J Neurosci. 1998;18:9517–28.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Porter LL, White EL. Synaptic connections of callosal projection neurons in the vibrissal region of mouse primary motor cortex: an electron microscopic/horseradish peroxidase study. J Comp Neurol. 1986;248:573–87.PubMedCrossRefGoogle Scholar
  62. 62.
    Barbaresi P, Bernardi S, Manzoni T. Callosal connections of the somatic sensory areas II and IV in the cat. J Comp Neurol. 1989;283:355–73.PubMedCrossRefGoogle Scholar
  63. 63.
    Barbaresi P, Minelli A, Manzoni T. Topographical relations between ipsilateral cortical afferents and callosal neurons in the second somatic sensory area of cats. J Comp Neurol. 1994;343:582–96.PubMedCrossRefGoogle Scholar
  64. 64.
    Cisse Y, Grenier F, Timofeev I, Steriade M. Electrophysiological properties and input-output organization of callosal neurons in cat association cortex. J Neurophysiol. 2003;89:1402–13.PubMedCrossRefGoogle Scholar
  65. 65.
    Markram H, Lubke J, Frotscher M, Roth A, Sakmann B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol. 1997;500:409–40.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Krimer LS, Goldman-Rakic PS. Prefrontal microcircuits: membrane properties and excitatory input of local, medium, and wide arbor interneurons. J Neurosci. 2001;21:3788–96.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Thomson AM, West DC, Deuchars J. Properties of single axon excitatory postsynaptic potentials elicited in spiny interneurons by action potentials in pyramidal neurons in slices of rat neocortex. Neuroscience. 1995;69:727–38.PubMedCrossRefGoogle Scholar
  68. 68.
    Buhl EH, Tamãs G, Szilãgyi T, Stricker C, Paulsen O, Somogyi P. Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. J Physiol. 1997;500:689–713.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Feldmeyer D, Egger V, Lubke J, Sakmann B. Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex. J Physiol. 1999;521:169–90.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Galarreta M, Hestrin S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature. 1999;402:72–5.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Gibson JR, Beierlein M, Connors BW. Two networks of electrically coupled inhibitory neurons in neocortex. Nature. 1999;402:75–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Jahnsen H, Llinás R. Ionic basis for electroresponsiveness and oscillatory properties of Guinea-pig thalamic neurones in vitro. J Physiol. 1984;349:227–47.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Parri HR, Crunelli V. Sodium current in rat and cat thalamocortical neurons: role of a non-inactivating component in tonic and burst firing. J Neurosci. 1998;18:854–67.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Markram H, Helm P, Sakmann B. Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. J Physiol. 1995;485:1–20.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Abel HJ, Lee JC, Callaway JC, Foehring RC. Relationships between intracellular calcium and afterhyperpolarizations in neocortical pyramidal neurons. J Neurophysiol. 2004;91:324–35.PubMedCrossRefGoogle Scholar
  76. 76.
    Storm JF. Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. J Physiol. 1987;385:733–59.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sah P, Faber ES. Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol. 2002;66:345–53.PubMedCrossRefGoogle Scholar
  78. 78.
    McCormick DA, Pape HC. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurons. J Physiol. 1990;431:291–318.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Jahnsen H, Llinás R. Electrophysiological properties of Guinea-pig thalamic neurones: an in vitro study. J Physiol. 1984;349:205–26.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hernandez-Cruz A, Pape HC. Identification of two calcium currents in acutely dissociated neurons from the rat lateral geniculate nucleus. J Neurophysiol. 1989;61:1270–83.PubMedCrossRefGoogle Scholar
  81. 81.
    Tarasenko AN, Isaev DS, Eremin AV, Kostyuk PG. Developmental changes in the expression of low-voltage-activated Ca2+ channels in rat visual cortical neurones. J Physiol. 1998;509:385–94.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Timofeev I, Bazhenov M, Sejnowski T, Steriade M. Contribution of intrinsic and synaptic factors in the desynchronization of thalamic oscillatory activity. Thalamus Relat Syst. 2001;1:53–69.CrossRefGoogle Scholar
  83. 83.
    Hughes SW, Blethyn KL, Cope DW, Crunelli V. Properties and origin of spikelets in thalamocortical neurones in vitro. Neuroscience. 2002;110:395–401.PubMedCrossRefGoogle Scholar
  84. 84.
    Fuentealba P, Crochet S, Timofeev I, Bazhenov M, Sejnowski TJ, Steriade M. Experimental evidence and modeling studies support a synchronizing role for electrical coupling in the cat thalamic reticular neurons in vivo. Eur J Neurosci. 2004;20:111–9.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Mukhametov LM, Rizzolatti G, Tradardi V. Spontaneous activity of neurones of nucleus reticularis thalami in freely moving cats. J Physiol. 1970;210:651–67.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Steriade M, Wyzinski P. Cortically elicited activities in thalamic reticularis neurons. Brain Res. 1972;42:514–20.PubMedCrossRefGoogle Scholar
  87. 87.
    Steriade M, Domich L, Oakson G. Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance. J Neurosci. 1986;6:68–81.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Contreras D, Curró Dossi R, Steriade M. Bursting and tonic discharges in two classes of reticular thalamic neurons. J Neurophysiol. 1992;68:973–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Bal T, McCormick DA. What stops synchronized thalamocortical oscillations? Neuron. 1996;17:297–308.PubMedCrossRefGoogle Scholar
  90. 90.
    Gentet LJ, Ulrich D. Strong, reliable and precise synaptic connections between thalamic relay cells and neurones of the nucleus reticularis in juvenile rats. J Physiol. 2003;546:801–11.PubMedCrossRefGoogle Scholar
  91. 91.
    Bal T, McCormick DA. Mechanisms of oscillatory activity in Guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. J Physiol. 1993;468:669–91.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Contreras D, Dossi RC, Steriade M. Electrophysiological properties of cat reticular thalamic neurones in vivo. J Physiol. 1993;470:273–94.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Fuentealba P, Timofeev I, Steriade M. Prolonged hyperpolarizing potentials precede spindle oscillations in the thalamic reticular nucleus. Proc Natl Acad Sci U S A. 2004;101:9816–21.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Avanzini G, de Curtis M, Panzica F, Spreafico R. Intrinsic properties of nucleus reticularis thalami neurones of the rat studied in vitro. J Physiol Lond. 1989;416:111–22.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Huguenard JR, Prince DA. A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci. 1992;12:3804–17.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR. In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci. 1996;16:169–85.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Brunton J, Charpak S. Heterogeneity of cell firing properties and opioid sensitivity in the thalamic reticular nucleus. Neuroscience. 1997;78:303–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Fuentealba P, Timofeev I, Bazhenov M, Sejnowski TJ, Steriade M. Membrane bistability in thalamic reticular neurons during spindle oscillations. J Neurophysiol. 2005;93:294–304.PubMedCrossRefGoogle Scholar
  99. 99.
    Timofeev I, Chauvette S. Neuronal activity during the sleep-wake cycle. In: Dringenberg HC, editor. Handbook of behavioral neuroscience. Philadelphia: Elsevier; 2019. p. 3–17.Google Scholar
  100. 100.
    Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Self-sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABAA receptor potentials. Nat Neurosci. 1999;2:168–74.PubMedCrossRefGoogle Scholar
  101. 101.
    Landisman CE, Long MA, Beierlein M, Deans MR, Paul DL, Connors BW. Electrical synapses in the thalamic reticular nucleus. J Neurosci. 2002;22:1002–9.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Shu Y, McCormick DA. Inhibitory interactions between ferret thalamic reticular neurons. J Neurophysiol. 2002;87:2571–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Hou G, Smith AG, Zhang Z-W. Lack of intrinsic GABAergic connections in the thalamic reticular nucleus of the mouse. J Neurosci. 2016;36:7246–52.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Long MA, Landisman CE, Connors BW. Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus. J Neurosci. 2004;24:341–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Trageser JC, Burke KA, Masri R, Li Y, Sellers L, Keller A. State-dependent gating of sensory inputs by zona incerta. J Neurophysiol. 2006;96:1456–63.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Veinante P, Lavallee P, Deschenes M. Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat. J Comp Neurol. 2000;424:197–204.PubMedCrossRefGoogle Scholar
  107. 107.
    McCormick DA, Connors BW, Lighthall JW, Prince DA. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol. 1985;54:782–806.PubMedCrossRefGoogle Scholar
  108. 108.
    Connors BW, Gutnick MJ. Intrinsic firing patterns of divers neocortical neurons. Trends Neurosci. 1990;13:99–104.PubMedCrossRefGoogle Scholar
  109. 109.
    Gray CM, McCormick DA. Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science. 1996;274:109–13.PubMedCrossRefGoogle Scholar
  110. 110.
    Steriade M, Timofeev I, Dürmüller N, Grenier F. Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30–40 Hz) spike bursts. J Neurophysiol. 1998;79:483–90.PubMedCrossRefGoogle Scholar
  111. 111.
    Steriade M. Neocortical cell classes are flexible entities. Nat Rev Neurosci. 2004;5:121–34.PubMedCrossRefGoogle Scholar
  112. 112.
    Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M. Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex. 2000;10:1185–99.PubMedCrossRefGoogle Scholar
  113. 113.
    McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol. 1992;39:337–88.PubMedCrossRefGoogle Scholar
  114. 114.
    Massimini M, Amzica F. Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. J Neurophysiol. 2001;85:1346–50.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Somjen GG. Ion regulation in the brain: implications for pathophysiology. Neuroscientist. 2002;8:254–67.PubMedCrossRefGoogle Scholar
  116. 116.
    Crochet S, Chauvette S, Boucetta S, Timofeev I. Modulation of synaptic transmission in neocortex by network activities. Eur J Neurosci. 2005;21:1030–44.PubMedCrossRefGoogle Scholar
  117. 117.
    Ding F, O’Donnell J, Xu Q, Kang N, Goldman N, Nedergaard M. Changes in the composition of brain interstitial ions control the sleep-wake cycle. Science. 2016;352:550–5.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Boucetta S, Crochet S, Chauvette S, Seigneur J, Timofeev I. Extracellular Ca2+ fluctuations in vivo affect afterhyperpolarization potential and modify firing patterns of neocortical neurons. Exp Neurol. 2013;245:5–14.PubMedCrossRefGoogle Scholar
  119. 119.
    Iber C, Ancoli-Israel S, Chesson A, Quan S. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. Westchester, IL: American Academy of Sleep Medicine; 2007.Google Scholar
  120. 120.
    Creutzfeldt OD, Watanabe S, Lux HD. Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr Clin Neurophysiol. 1966;20:19–37.PubMedCrossRefGoogle Scholar
  121. 121.
    Borbely AA, Baumann F, Brandeis D, Strauch I, Lehmann D. Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol. 1981;51:483–95.PubMedCrossRefGoogle Scholar
  122. 122.
    Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993;262:679–85.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Steriade M, Nuñez A, Amzica F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993;13:3252–65.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Steriade M, Timofeev I, Grenier F. Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol. 2001;85:1969–85.PubMedCrossRefGoogle Scholar
  125. 125.
    Timofeev I, Grenier F, Steriade M. Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc Natl Acad Sci U S A. 2001;98:1924–9.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Steriade M, Nuñez A, Amzica F. Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillations and other sleep rhythms of electroencephalogram. J Neurosci. 1993;13:3266–83.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Sanchez-Vives MV, McCormick DA. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci. 2000;3:1027–34.PubMedCrossRefGoogle Scholar
  128. 128.
    Johnson HA, Buonomano DV. Development and plasticity of spontaneous activity and up states in cortical organotypic slices. J Neurosci. 2007;27:5915–25.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hinard V, Mikhail C, Pradervand S, Curie T, Houtkooper RH, Auwerx J, et al. Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J Neurosci. 2012;32:12506–17.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Jewett KA, Taishi P, Sengupta P, Roy S, Davis CJ, Krueger JM. Tumor necrosis factor enhances the sleep-like state and electrical stimulation induces a wake-like state in co-cultures of neurons and glia. Eur J Neurosci. 2015;42:2078–90.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Timofeev I, Contreras D, Steriade M. Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. J Physiol. 1996;494:265–78.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Destexhe A. Self-sustained asynchronous irregular states and up-down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. J Comput Neurosci. 2009;27:493–506.PubMedCrossRefGoogle Scholar
  133. 133.
    Hughes SW, Cope DW, Blethyn KL, Crunelli V. Cellular mechanisms of the slow (<1 Hz) oscillation in thalamocortical neurons in vitro. Neuron. 2002;33:947–58.PubMedCrossRefGoogle Scholar
  134. 134.
    Crunelli V, Hughes SW. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci. 2010;13:9–17.PubMedCrossRefGoogle Scholar
  135. 135.
    David F, Schmiedt JT, Taylor HL, Orban G, Di Giovanni G, Uebele VN, et al. Essential thalamic contribution to slow waves of natural sleep. J Neurosci. 2013;33:19599–610.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Lemieux M, Chen JY, Lonjers P, Bazhenov M, Timofeev I. The impact of cortical deafferentationon the neocortical slow oscillation. J Neurosci. 2014;34:5689–703.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Contreras D, Steriade M. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci. 1995;15:604–22.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Rappelsberger P, Pockberger H, Petsche H. The contribution of the cortical layers to the generation of the EEG: field potential and current source density analyses in the rabbit’s visual cortex. Electroencephalogr Clin Neurophysiol. 1982;53:254–69.PubMedCrossRefGoogle Scholar
  139. 139.
    Chauvette S, Volgushev M, Timofeev I. Origin of active states in local neocortical networks during slow sleep oscillation. Cereb Cortex. 2010;20:2660–74.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Csercsa R, Dombovári B, Fabó D, Wittner L, Eross L, Entz L, et al. Laminar analysis of slow wave activity in humans. Brain. 2010;133:2814–29.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Bazhenov M, Lonjers P, Skorheim S, Bedard C, Destexhe A. Non-homogeneous extracellular resistivity affects the current-source density profiles of up/down state oscillations. Philos Trans A Math Phys Eng Sci. 2011;369(1952):3802–19.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Contreras D, Timofeev I, Steriade M. Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J Physiol. 1996;494:251–64.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Computational models of thalamocortical augmenting responses. J Neurosci. 1998;18:6444–65.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Rosanova M, Timofeev I. Neuronal mechanisms mediating the variability of somatosensory evoked potentials during sleep oscillations in cats. J Physiol. 2005;562(2):569–82.PubMedCrossRefGoogle Scholar
  145. 145.
    Fuentealba P, Crochet S, Timofeev I, Steriade M. Synaptic interactions between thalamic and cortical inputs onto cortical neurons in vivo. J Neurophysiol. 2004;91:1990–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Cauller LJ, Kulics AT. A comparison of awake and sleeping cortical states by analysis of the somatosensory-evoked response of postcentral area 1 in rhesus monkey. Exp Brain Res. 1998;72:584–92.Google Scholar
  147. 147.
    Emerson RG, Sgro JA, Pedley TA, Hauser WA. State-dependent changes in the N20 component of the median nerve somatosensory eveoked potential. Neurology. 1988;38:64–8.PubMedCrossRefGoogle Scholar
  148. 148.
    Istvan PJ, Zarzecki P. Intrinsic discharge patterns and somatosensory inputs for neurons in raccoon primary somatosensory cortex. J Neurophysiol. 1994;72:2827–39.PubMedCrossRefGoogle Scholar
  149. 149.
    Azouz R, Gray CM. Cellular mechanisms contributing to response variability of cortical neurons in vivo. J Neurosci. 1999;19:2209–23.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Kisley MA, Gerstein GL. Trial-to-trial variability and state-dependent modulation of auditory-evoked responses in cortex. J Neurosci. 1999;19:10451–60.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Zhu JJ, Connors BW. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J Neurophysiol. 1999;81:1171–83.PubMedCrossRefGoogle Scholar
  152. 152.
    Massimini M, Rosanova M, Mariotti M. EEG slow (approximately 1 Hz) waves are associated with nonstationarity of thalamo-cortical sensory processing in the sleeping human. J Neurophysiol. 2003;89:1205–13.PubMedCrossRefGoogle Scholar
  153. 153.
    Sachdev RN, Ebner FF, Wilson CJ. Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. J Neurophysiol. 2004;92:3511–21.PubMedCrossRefGoogle Scholar
  154. 154.
    Chauvette S, Seigneur J, Timofeev I. Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron. 2012;75:1105–13.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Foffani G, Tutunculer B, Moxon KA. Role of spike timing in the forelimb somatosensory cortex of the rat. J Neurosci. 2004;24:7266–71.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Libet B, Alberts WW, Wright EW Jr, Feinstein B. Responses of human somatosensory cortex to stimuli below threshold for conscious sensation. Science. 1967;158:1597–600.PubMedCrossRefGoogle Scholar
  157. 157.
    Metherate R, Ashe JH. Ionic flux contributions to neocortical slow waves and nucleus basalis-mediated activation: whole-cell recordings in vivo. J Neurosci. 1993;13:5312–23.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Fatt P, Katz B. Spontaneous sub-threshold activity at motor-nerve endings. J Physiol. 1952;117:109–28.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Salin PA, Prince DA. Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. J Neurophysiol. 1996;75:1573–88.PubMedCrossRefGoogle Scholar
  160. 160.
    Paré D, Lebel E, Lang EJ. Differential impact of miniature synaptic potentials on the soma and dendrites of pyramidal neurons in vivo. J Neurophysiol. 1997;78:1735–9.PubMedCrossRefGoogle Scholar
  161. 161.
    Timofeev I, Grenier F, Steriade M. Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo. J Physiol Paris. 2000;94:343–55.PubMedCrossRefGoogle Scholar
  162. 162.
    Stafstrom CE, Schwindt PC, Crill WE. Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro. Brain Res. 1982;236:221–6.PubMedCrossRefGoogle Scholar
  163. 163.
    Thomson AM. Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro. J Physiol. 1997;502:131–47.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J Neurosci. 2002;22:8691–704.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Rulkov NF, Timofeev I, Bazhenov M. Oscillations in large-scale cortical networks: map-based model. J Comput Neurosci. 2004;17:203–23.PubMedCrossRefGoogle Scholar
  166. 166.
    Komarov M, Krishnan G, Chauvette S, Rulkov N, Timofeev I, Bazhenov M. New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics. J Comput Neurosci. 2018;44:1–24.PubMedCrossRefGoogle Scholar
  167. 167.
    Tsodyks MV, Markram H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A. 1997;94:719–23.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Galarreta M, Hestrin S. Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nat Neurosci. 1998;1:587–94.PubMedCrossRefGoogle Scholar
  169. 169.
    Fleidervish IA, Friedman A, Gutnick MJ. Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and Guinea-pig neocortical neurones in slices. J Physiol. 1996;493:83–97.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Fleidervish IA, Gutnick MJ. Kinetics of slow inactivation of persistent sodium current in layer V neurons of mouse neocortical slices. J Neurophysiol. 1996;76:2125–30.PubMedCrossRefGoogle Scholar
  171. 171.
    Schwindt PC, Spain WJ, Crill WE. Long-lasting reduction of excitability by a sodium-dependent potassium current in cat neocortical neurons. J Neurophysiol. 1989;61:233–44.PubMedCrossRefGoogle Scholar
  172. 172.
    Hill S, Tononi G. Modeling sleep and wakefulness in the thalamocortical system. J Neurophysiol. 2005;93:1671–98.PubMedCrossRefGoogle Scholar
  173. 173.
    Volgushev M, Chauvette S, Mukovski M, Timofeev I. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave sleep. J Neurosci. 2006;26:5665–72.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Compte A, Sanchez-Vives MV, McCormick DA, Wang X-J. Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J Neurophysiol. 2003;89:2707–25.PubMedCrossRefGoogle Scholar
  175. 175.
    Chen JY, Chauvette S, Skorheim S, Timofeev I, Bazhenov M. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation. J Physiol. 2012;590:3987–4010.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Neske GT, Patrick SL, Connors BW. Contributions of diverse excitatory and inhibitory neurons to recurrent network activity in cerebral cortex. J Neurosci. 2015;35:1089–105.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Lemieux M, Chauvette S, Timofeev I. Neocortical inhibitory activities and thalamocortical afferents contribute to the onset of silent states of the neocortical slow oscillation. J Neurophysiol. 2015;113(3):768–79.PubMedCrossRefGoogle Scholar
  178. 178.
    Puig MV, Ushimaru M, Kawaguchi Y. Two distinct activity patterns of fast-spiking interneurons during neocortical UP states. Proc Natl Acad Sci. 2008;105:8428–33.PubMedCrossRefGoogle Scholar
  179. 179.
    Funk CM, Peelman K, Bellesi M, Marshall W, Cirelli C, Tononi G. Role of somatostatin-positive cortical interneurons in the generation of sleep slow waves. J Neurosci. 2017;37:9132–48.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Niethard N, Ngo H-VV, Ehrlich I, Born J. Cortical circuit activity underlying sleep slow oscillations and spindles. Proc Natl Acad Sci. 2018;115:E9220–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Zucca S, Pasquale V, Lagomarsino de Leon Roig P, Panzeri S, Fellin T. Thalamic drive of cortical parvalbumin-positive interneurons during down states in anesthetized mice. Curr Biol. 2019;29:1481–90.e1486.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Manns ID, Alonso A, Jones BE. Discharge profiles of juxtacellularly labeled and immunohistochemically identified GABAergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci. 2000;20:9252–63.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Chen MC, Ferrari L, Sacchet MD, Foland-Ross LC, Qiu M-H, Gotlib IH, et al. Identification of a direct GABAergic pallidocortical pathway in rodents. Eur J Neurosci. 2015;41(6):748–59.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Miyashita T, Rockland KS. GABAergic projections from the hippocampus to the retrosplenial cortex in the rat. Eur J Neurosci. 2007;26:1193–204.PubMedCrossRefGoogle Scholar
  185. 185.
    Sanchez-Vives MV, Mattia M, Compte A, Perez-Zabalza M, Winograd M, Descalzo VF, et al. Inhibitory modulation of cortical up states. J Neurophysiol. 2010;104:1314–24.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Leresche N, Lightowler S, Soltesz I, Jassik-Gerschenfeld D, Crunelli V. Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. J Physiol. 1991;441:155–74.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Soltesz I, Lightowler S, Leresche N, Jassik-Gerschenfeld D, Pollard CE, Crunelli V. Two inward currents and the transformation of low-frequency oscillations of rat and cat thalamocortical cells. J Physiol. 1991;441:175–97.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Curró Dossi R, Nuñez A, Steriade M. Electrophysiology of slow (0.5-4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. J Physiol. 1992;447:215–34.CrossRefGoogle Scholar
  189. 189.
    Thomson AM, Deuchars J. Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. Cereb Cortex. 1997;7:510–22.PubMedCrossRefGoogle Scholar
  190. 190.
    Cossart R, Aronov D, Yuste R. Attractor dynamics of network UP states in the neocortex. Nature. 2003;423:283–8.PubMedCrossRefGoogle Scholar
  191. 191.
    Timofeev I, Steriade M. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J Neurophysiol. 1996;76:4152–68.PubMedCrossRefGoogle Scholar
  192. 192.
    Shu Y, Hasenstaub A, Badoual M, Bal T, McCormick DA. Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J Neurosci. 2003;23:10388–401.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron. 2005;47:423–35.PubMedCrossRefGoogle Scholar
  194. 194.
    MacLean JN, Watson BO, Aaron GB, Yuste R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron. 2005;48:811–23.PubMedCrossRefGoogle Scholar
  195. 195.
    Rudolph M, Pospischil M, Timofeev I, Destexhe A. Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J Neurosci. 2007;27(20):5280–90.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Ushimaru M, Ueta Y, Kawaguchi Y. Differentiated participation of thalamocortical subnetworks in slow/spindle waves and desynchronization. J Neurosci. 2012;32:1730–46.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Ushimaru M, Kawaguchi Y. Temporal structure of neuronal activity among cortical neuron subtypes during slow oscillations in anesthetized rats. J Neurosci. 2015;35:11988–2001.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Gent TC, Bandarabadi M, Herrera CG, Adamantidis AR. Thalamic dual control of sleep and wakefulness. Nat Neurosci. 2018;21:974–84.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G. The sleep slow oscillation as a traveling wave. J Neurosci. 2004;24:6862–70.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Nir Y, Staba RJ, Andrillon T, Vyazovskiy Vladyslav V, Cirelli C, Fried I, et al. Regional slow waves and spindles in human sleep. Neuron. 2011;70:153–69.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G. Local sleep in awake rats. Nature. 2011;472:443–7.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Bonjean M, Baker T, Bazhenov M, Cash S, Halgren E, Sejnowski T. Interactions between core and matrix thalamocortical projections in human sleep spindle synchronization. J Neurosci. 2010;32:5250–63.CrossRefGoogle Scholar
  203. 203.
    Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature. 1998;391:892–6.PubMedCrossRefGoogle Scholar
  204. 204.
    Desai NS, Rutherford LC, Turrigiano GG. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat Neurosci. 1999;2:515–20.PubMedCrossRefGoogle Scholar
  205. 205.
    Achermann P, Borbely AA. Low-frequency (<1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience. 1997;81:213–22.PubMedCrossRefGoogle Scholar
  206. 206.
    Villablanca J, Salinas-Zeballos ME. Sleep-wakefulness, EEG and behavioral studies of chronic cats without the thalamus: the ‘athalamic’ cat. Arch Ital Biol. 1972;110:383–411.PubMedGoogle Scholar
  207. 207.
    Ball GJ, Gloor P, Schaul N. The cortical electromicrophysiology of pathological delta waves in the electroencephalogram of cats. Electroencephalogr Clin Neurophysiol. 1977;43:346–61.PubMedCrossRefGoogle Scholar
  208. 208.
    Houweling AR, Bazhenov M, Timofeev I, Steriade M, Sejnowski T. Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis. Cereb Cortex. 2005;15(6):834–45.PubMedCrossRefGoogle Scholar
  209. 209.
    Amzica F, Steriade M. Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol. 1998;107:69–83.PubMedCrossRefGoogle Scholar
  210. 210.
    Timofeev I, Grenier F, Steriade M. Intrinsic vs. synaptic factors in neocortical neurons during natural waking-sleeping cycle: an intracellular study. New Orleans, LA: Society for Neuroscience, 30th annual meeting; 2000.Google Scholar
  211. 211.
    Bukhtiyarova O, Soltani S, Chauvette S, Timofeev I. Supervised semi-automatic detection of slow waves in non-anaesthetized mice with the use of neural network approach. Trans Brain Rhythmicity. 2016;1:14–8.CrossRefGoogle Scholar
  212. 212.
    Bukhtiyarova O, Soltani S, Chauvette S, Timofeev I. Slow wave detection in sleeping mice: comparison of traditional and machine learning methods. J Neurosci Methods. 2019;316:35–45.PubMedCrossRefGoogle Scholar
  213. 213.
    Steriade M, McCarley RW. Brainstem control of wakefulness and sleep. New York: Plenum; 2005.Google Scholar
  214. 214.
    Saper CB. Staying awake for dinner: hypothalamic integration of sleep, feeding, and circadian rhythms. Prog Brain Res. 2006;153:243–52.PubMedCrossRefGoogle Scholar
  215. 215.
    Lee S-H, Dan Y. Neuromodulation of brain states. Neuron. 2012;76:209–22.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Sakai K. Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice. Neuroscience. 2011;197:200–24.PubMedCrossRefGoogle Scholar
  217. 217.
    Eschenko O, Magri C, Panzeri S, Sara SJ. Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. Cereb Cortex. 2012;22:426–35.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE. Discharge profiles across the sleep–waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci. 2014;34:4708–27.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Krishnan GP, Chauvette S, Shamie I, Soltani S, Timofeev I, Cash SS, et al. Cellular and neurochemical basis of sleep stages in the thalamocortical network. elife. 2016;5:e18607.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Lytton WW, Destexhe A, Sejnowski TJ. Control of slow oscillations in the thalamocortical neuron: a computer model. Neuroscience. 1996;70:673–84.PubMedCrossRefGoogle Scholar
  221. 221.
    Steriade M, Dossi RC, Nunez A. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J Neurosci. 1991;11:3200–17.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Williams SR, Tóth TI, Turner JP, Hughes SW, Crunelli W. The ‘window’ component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. J Physiol. 1997;505:689–705.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Morison RS, Dempsey EW. A study of thalamo-cortical relations. Am J Phys. 1942;135:281–92.CrossRefGoogle Scholar
  224. 224.
    Morison RS, Bassett DL. Electrical activity of the thalamus and basal ganglia in decorticate cats. J Neurophysiol. 1945;8:309–14.CrossRefGoogle Scholar
  225. 225.
    Contreras D, Destexhe A, Sejnowski TJ, Steriade M. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science. 1996;274:771–4.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    von Krosigk M, Bal T, McCormick DA. Cellular mechanisms of a synchronized oscillation in the thalamus. Science. 1993;261:361–4.CrossRefGoogle Scholar
  227. 227.
    Kim U, Bal T, McCormick DA. Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. J Neurophysiol. 1995;74:1301–23.PubMedCrossRefGoogle Scholar
  228. 228.
    Steriade M, Deschenes M. The thalamus as a neuronal oscillator. Brain Res Rev. 1984;8:1–63.CrossRefGoogle Scholar
  229. 229.
    Steriade M, Deschenes M, Domich L, Mulle C. Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol. 1985;54:1473–97.PubMedCrossRefGoogle Scholar
  230. 230.
    Steriade M, Llinas R. The functional states of the thalamus and the associated neuronal interplay. Physiol Rev. 1988;68:649–742.PubMedCrossRefGoogle Scholar
  231. 231.
    Steriade M, Jones EG, Llinas R. Thalmic oscillations and signaling. New York: Wiley; 1990.Google Scholar
  232. 232.
    Steriade M, Domich L, Oakson G, Deschenes M. The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol. 1987;57:260–73.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Golshani P, Liu XB, Jones EG. Differences in quantal amplitude reflect GluR4- subunit number at corticothalamic synapses on two populations of thalamic neurons. Proc Natl Acad Sci U S A. 2001;98:4172–7.PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Budde T, Biella G, Munsch T, Pape H-C. Lack of regulation by intracellular Ca2+ of the hyperpolarization-activated cation current in rat thalamic neurones. J Physiol Lond. 1997;503:79–85.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Luthi A, Bal T, McCormick DA. Periodicity of thalamic spindle waves is abolished by ZD7288, a blocker of Ih. J Neurophysiol. 1998;79:3284–9.PubMedCrossRefGoogle Scholar
  236. 236.
    Bonjean M, Baker T, Lemieux M, Timofeev I, Sejnowski T, Bazhenov M. Corticothalamic feedback controls sleep spindle duration in vivo. J Neurosci. 2011;31:9124–34.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Destexhe A, Babloyantz A, Sejnowski TJ. Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophys J. 1993;65:1538–52.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Destexhe A, Gaspard P. Bursting oscillations from a homoclinic tangency in a time delay system. Phys Lett A. 1993;173:386–91.CrossRefGoogle Scholar
  239. 239.
    Destexhe A, Bal T, McCormick DA, Sejnowski TJ. Ionic mechanisms underlaying synchronized and propagating waves in a model of ferret thalamic slices. J Neurophysiol. 1996;76:2049–70.PubMedCrossRefGoogle Scholar
  240. 240.
    Timofeev I, Steriade M. Cellular mechanisms underlying intrathalamic augmenting responses of reticular and relay neurons. J Neurophysiol. 1998;79:2716–29.PubMedCrossRefGoogle Scholar
  241. 241.
    Steriade M, Timofeev I. Short-term plasticity during intrathalamic augmenting responses in decorticated cats. J Neurosci. 1997;17:3778–95.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    von Krosigk M, Monckton JE, Reiner PB, McCormick DA. Dynamic properties of corticothalamic excitatory postsynaptic potentials and thalamic reticular inhibitory postsynaptic potentials in thalamocortical neurons of the Guinea-pig dorsal lateral geniculate nucleus. Neuroscience. 1999;91:7–20.CrossRefGoogle Scholar
  243. 243.
    Andersen P, Andersson SA. Physiological basis of the alpha rhythm. New York: Appleton-Century-Crofts; 1968.Google Scholar
  244. 244.
    Timofeev I, Steriade M. Fast (mainly 30–100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials. J Physiol. 1997;504:153–68.PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Baranyi A, Szente MB, Woody CD. Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. I. Patterns of firing activity and synaptic responses. J Neurophysiol. 1993;69:1850–64.PubMedCrossRefGoogle Scholar
  246. 246.
    Deschênes M, Paradis M, Roy JP, Steriade M. Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J Neurophysiol. 1984;51:1196–219.PubMedCrossRefGoogle Scholar
  247. 247.
    Kim U, McCormick DA. The functional influence of burst and tonic firing mode on synaptic interactions in the thalamus. J Neurosci. 1998;18:9500–16.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Houweling A, Bazhenov M, Timofeev I, Steriade M, Sejnowski T. A model of reticular thalamic spindle oscillations mediated by GABAa depolarization. New Orleans, LA: Society for Neuroscience, 30th annual meeting; November 4–9, 2000.Google Scholar
  249. 249.
    Destexhe A, Contreras D, Sejnowski TJ, Steriade M. Modeling the control of reticular thalamic oscillations by neuromodulators. Neuroreport. 1994;5:2217–20.PubMedCrossRefGoogle Scholar
  250. 250.
    Destexhe A, Contreras D, Sejnowski TJ, Steriade M. A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J Neurophysiol. 1994;72:803–18.PubMedCrossRefGoogle Scholar
  251. 251.
    Ulrich D, Huguenard JR. Nucleus-specific chloride homeostasis in rat thalamus. J Neurosci. 1997;17:2348–54.PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Ulrich D, Huguenard JR. g-Aminobutyric acid type B receptor-dependent burst-firing in thalamic neurons: a dynamic clamp study. Proc Natl Acad Sci U S A. 1996;93:13245–9.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Golomb D, Amitai Y. Propagating neuronal discharges in neocortical slices: computational and experimental study. J Neurophysiol. 1997;8:1199–211.CrossRefGoogle Scholar
  254. 254.
    Ermentrout B. Linearization of F-I curves by adaptation. Neural Comput. 1998;10:1721–9.PubMedCrossRefGoogle Scholar
  255. 255.
    Golomb D, Ermentrout GB. Continuous and lurching traveling pulses in neuronal networks with delay and spatially decaying connectivity. Proc Natl Acad Sci U S A. 1999;96:13480–5.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Bazhenov M, Timofeev I, Steriade M, Sejnowski T. Spiking-bursting activity in the thalamic reticular nucleus initiate sequences of spindle oscillations in thalamic network. J Neurophysiol. 2000;84:1076–87.PubMedCrossRefGoogle Scholar
  257. 257.
    Dehghani N, Cash SS, Chen CC, Hagler DJ Jr, Huang M, Dale AM, et al. Divergent cortical generators of MEG and EEG during human sleep spindles suggested by distributed source modeling. PLoS One. 2010;5:e11454.PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Dehghani N, Cash SS, Rossetti AO, Chen CC, Halgren E. Magnetoencephalography demonstrates multiple asynchronous generators during human sleep spindles. J Neurophysiol. 2010;104:179–88.PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Dehghani N, Cash SS, Halgren E. Topographical frequency dynamics within EEG and MEG sleep spindles. Clin Neurophysiol. 2011;122:229–35.PubMedCrossRefGoogle Scholar
  260. 260.
    Jones EG. The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 2001;24:595–601.PubMedCrossRefGoogle Scholar
  261. 261.
    Jones EG. Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond Ser B Biol Sci. 2002;357:1659–73.CrossRefGoogle Scholar
  262. 262.
    Andrillon T, Nir Y, Staba RJ, Ferrarelli F, Cirelli C, Tononi G, et al. Sleep spindles in humans: insights from intracranial EEG and unit recordings. J Neurosci. 2011;31:17821–34.PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Mölle M, Bergmann TO, Marshall L, Born J. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep. 2011;34:1411–21.PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Timofeev I, Chauvette S. The spindles: are they still thalamic? Sleep. 2013;36:825–6.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Halassa MM, Siegle JH, Ritt JT, Ting JT, Feng G, Moore CI. Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat Neurosci. 2011;14:1118–20.PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Ayoub A, Aumann D, Hörschelmann A, Kouchekmanesch A, Paul P, Born J, et al. Differential effects on fast and slow spindle activity, and the sleep slow oscillation in humans with carbamazepine and flunarizine to antagonize voltage-dependent Na+ and Ca2+ channel activity. Sleep. 2013;36(6):905–11.PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Timofeev I, Grenier F, Steriade M. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. J Neurophysiol. 1998;80:1495–513.PubMedCrossRefGoogle Scholar
  268. 268.
    Stickgold R, Walker MP. Sleep-dependent memory consolidation and reconsolidation. Sleep Med. 2007;8:331–43.PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010;11:114–26.CrossRefPubMedGoogle Scholar
  270. 270.
    Plihal W, Born J. Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology. 1999;36:571–82.PubMedCrossRefGoogle Scholar
  271. 271.
    Stickgold R, Whidbee D, Schirmer B, Patel V, Hobson JA. Visual discrimination task improvement: a multi-step process occurring during sleep. J Cogn Neurosci. 2000;12:246–54.PubMedCrossRefGoogle Scholar
  272. 272.
    Wagner U, Gais S, Born J. Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learn Mem. 2001;8:112–9.PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Fischer S, Hallschmid M, Elsner AL, Born J. Sleep forms memory for finger skills. Proc Natl Acad Sci U S A. 2002;99:11987–91.PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Mednick S, Nakayama K, Stickgold R. Sleep-dependent learning: a nap is as good as a night. Nat Neurosci. 2003;6:697–8.PubMedCrossRefGoogle Scholar
  275. 275.
    Lahl O, Wispel C, Willigens B, Pietrowsky R. An ultra short episode of sleep is sufficient to promote declarative memory performance. J Sleep Res. 2008;17:3–10.PubMedCrossRefGoogle Scholar
  276. 276.
    Gais S, Plihal W, Wagner U, Born J. Early sleep triggers memory for early visual discrimination skills. Nat Neurosci. 2000;3:1335–9.PubMedCrossRefGoogle Scholar
  277. 277.
    Stickgold R, James L, Hobson JA. Visual discrimination learning requires sleep after training. Nat Neurosci. 2000;3:1237–8.PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Huber R, Ghilardi MF, Massimini M, Tononi G. Local sleep and learning. Nature. 2004;430:78–81.PubMedPubMedCentralCrossRefGoogle Scholar
  279. 279.
    Steriade M, Timofeev I. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron. 2003;37:563–76.PubMedCrossRefGoogle Scholar
  280. 280.
    Harris KM, Sultan P. Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses. Neuropharmacology. 1995;34:1387–95.PubMedCrossRefGoogle Scholar
  281. 281.
    Schikorski T, Stevens CF. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci. 1997;17:5858–67.PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Schikorski T, Stevens CF. Quantitative fine-structural analysis of olfactory cortical synapses. Proc Natl Acad Sci U S A. 1999;96:4107–12.PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Triller A, Korn H. Transmission at a central inhibitory synapse. III. Ultrastructure of physiologically identified and stained terminals. J Neurophysiol. 1982;48:708–36.PubMedCrossRefGoogle Scholar
  284. 284.
    Redman S. Quantal analysis of synaptic potentials in neurons of the central nervous system. Physiol Rev. 1990;70:165–98.PubMedCrossRefGoogle Scholar
  285. 285.
    Stevens CF, Wang Y. Facilitation and depression at single central synapses. Neuron. 1995;14:795–802.PubMedCrossRefGoogle Scholar
  286. 286.
    Auger C, Marty A. Quantal currents at single-site central synapses. J Physiol. 2000;526(1):3–11.PubMedPubMedCentralCrossRefGoogle Scholar
  287. 287.
    Hanse E, Gustafsson B. Quantal variability at glutamatergic synapses in area CA1 of the rat neonatal hippocampus. J Physiol. 2001;531:467–80.PubMedPubMedCentralCrossRefGoogle Scholar
  288. 288.
    Tong G, Jahr CE. Multivesicular release from excitatory synapses of cultured hippocampal neurons. Neuron. 1994;12:51–9.PubMedCrossRefGoogle Scholar
  289. 289.
    Auger C, Kondo S, Marty A. Multivesicular release at single functional synaptic sites in cerebellar stellate and basket cells. J Neurosci. 1998;18:4532–47.PubMedPubMedCentralCrossRefGoogle Scholar
  290. 290.
    Isaac JT, Luthi A, Palmer MJ, Anderson WW, Benke TA, Collingridge GL. An investigation of the expression mechanism of LTP of AMPA receptor-mediated synaptic transmission at hippocampal CA1 synapses using failures analysis and dendritic recordings. Neuropharmacology. 1998;37:1399–410.PubMedCrossRefGoogle Scholar
  291. 291.
    Wadiche JI, Jahr CE. Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron. 2001;32:301–13.PubMedCrossRefGoogle Scholar
  292. 292.
    Oertner TG, Sabatini BL, Nimchinsky EA, Svoboda K. Facilitation at single synapses probed with optical quantal analysis. Nat Neurosci. 2002;5:657–64.PubMedCrossRefGoogle Scholar
  293. 293.
    Conti R, Lisman J. The high variance of AMPA receptor- and NMDA receptor-mediated responses at single hippocampal synapses: evidence for multiquantal release. Proc Natl Acad Sci U S A. 2003;100:4885–90.PubMedPubMedCentralCrossRefGoogle Scholar
  294. 294.
    Heinemann U, Lux HD, Gutnick MJ. Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp Brain Res. 1977;27:237–43.PubMedGoogle Scholar
  295. 295.
    Thomson AM, Deuchars J, West DC. Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. J Neurophysiol. 1993;70:2354–69.PubMedCrossRefGoogle Scholar
  296. 296.
    Markram H, Wang Y, Tsodyks M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci U S A. 1998;95:5323–8.PubMedPubMedCentralCrossRefGoogle Scholar
  297. 297.
    Silver RA, Lubke J, Sakmann B, Feldmeyer D. High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science. 2003;302:1981–4.PubMedCrossRefGoogle Scholar
  298. 298.
    Qin YL, McNaughton BL, Skaggs WE, Barnes CA. Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philos Trans R Soc Lond Ser B Biol Sci. 1997;352:1525–33.CrossRefGoogle Scholar
  299. 299.
    Kudrimoti HS, Barnes CA, McNaughton BL. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci. 1999;19:4090–101.PubMedPubMedCentralCrossRefGoogle Scholar
  300. 300.
    Nadasdy Z, Hirase H, Czurko A, Csicsvari J, Buzsaki G. Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci. 1999;19:9497–507.PubMedPubMedCentralCrossRefGoogle Scholar
  301. 301.
    Sutherland GR, McNaughton B. Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr Opin Neurobiol. 2000;10:180–6.PubMedCrossRefGoogle Scholar
  302. 302.
    Hoffman KL, McNaughton BL. Coordinated reactivation of distributed memory traces in primate neocortex. Science. 2000;297:2070–3.CrossRefGoogle Scholar
  303. 303.
    Lee AK, Wilson MA. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron. 2002;36:1183–94.PubMedPubMedCentralCrossRefGoogle Scholar
  304. 304.
    Pennartz CM, Lee E, Verheul J, Lipa P, Barnes CA, McNaughton BL. The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples. J Neurosci. 2004;24:6446–56.PubMedPubMedCentralCrossRefGoogle Scholar
  305. 305.
    Ribeiro S, Gervasoni D, Soares ES, Zhou Y, Lin SC, Pantoja J, et al. Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas. PLoS Biol. 2004;2:E24.PubMedPubMedCentralCrossRefGoogle Scholar
  306. 306.
    Foster DJ, Wilson MA. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature. 2006;440:680–3.PubMedCrossRefGoogle Scholar
  307. 307.
    Tatsuno M, Lipa P, McNaughton BL. Methodological considerations on the use of template matching to study long-lasting memory trace replay. J Neurosci. 2006;26:10727–42.PubMedPubMedCentralCrossRefGoogle Scholar
  308. 308.
    Euston DR, Tatsuno M, McNaughton BL. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science. 2007;318:1147–50.PubMedCrossRefGoogle Scholar
  309. 309.
    Ji D, Wilson MA. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci. 2007;10:100–7.PubMedCrossRefGoogle Scholar
  310. 310.
    Karlsson MP, Frank LM. Awake replay of remote experiences in the hippocampus. Nat Neurosci. 2009;12:913–8.PubMedPubMedCentralCrossRefGoogle Scholar
  311. 311.
    Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neurosci. 2009;12:919–26.PubMedCrossRefGoogle Scholar
  312. 312.
    Popa D, Duvarci S, Popescu AT, Lena C, Pare D. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc Natl Acad Sci U S A. 2010;107:6516–9.PubMedPubMedCentralCrossRefGoogle Scholar
  313. 313.
    Bendor D, Wilson MA. Biasing the content of hippocampal replay during sleep. Nat Neurosci. 2012;15:1439–44.PubMedPubMedCentralCrossRefGoogle Scholar
  314. 314.
    Carr MF, Karlsson MP, Frank LM. Transient slow gamma synchrony underlies hippocampal memory replay. Neuron. 2012;75:700–13.PubMedPubMedCentralCrossRefGoogle Scholar
  315. 315.
    McClelland JL, McNaughton BL, O’Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev. 1995;102:419–57.PubMedCrossRefGoogle Scholar
  316. 316.
    Schwindel CD, McNaughton BL. Hippocampal-cortical interactions and the dynamics of memory trace reactivation. Prog Brain Res. 2011;193:163–77.PubMedCrossRefGoogle Scholar
  317. 317.
    Davidson TJ, Kloosterman F, Wilson MA. Hippocampal replay of extended experience. Neuron. 2009;63:497–507.PubMedPubMedCentralCrossRefGoogle Scholar
  318. 318.
    Gupta AS, van der Meer MA, Touretzky DS, Redish AD. Hippocampal replay is not a simple function of experience. Neuron. 2010;65:695–705.PubMedPubMedCentralCrossRefGoogle Scholar
  319. 319.
    Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci. 2011;14:147–53.PubMedPubMedCentralCrossRefGoogle Scholar
  320. 320.
    van Dongen EV, Takashima A, Barth M, Zapp J, Schad LR, Paller KA, et al. Memory stabilization with targeted reactivation during human slow-wave sleep. Proc Natl Acad Sci U S A. 2012;109:10575–80.PubMedPubMedCentralCrossRefGoogle Scholar
  321. 321.
    Leon WC, Bruno MA, Allard S, Nader K, Cuello AC. Engagement of the PFC in consolidation and recall of recent spatial memory. Learn Mem. 2010;17:297–305.PubMedCrossRefGoogle Scholar
  322. 322.
    Barbosa FF, Santos JR, Meurer YSR, MacÍdo PT, Ferreira LMS, Pontes IMO, et al. Differential cortical c-Fos and Zif-268 expression after object and spatial memory processing in a standard or episodic-like object recognition task. Front Behav Neurosci. 2013;7:112.PubMedPubMedCentralCrossRefGoogle Scholar
  323. 323.
    Johnson LA, Euston DR, Tatsuno M, McNaughton BL. Stored-trace reactivation in rat prefrontal cortex is correlated with down-to-up state fluctuation density. J Neurosci. 2010;30:2650–61.PubMedPubMedCentralCrossRefGoogle Scholar
  324. 324.
    Siapas AG, Lubenov EV, Wilson MA. Prefrontal phase locking to hippocampal theta oscillations. Neuron. 2005;46:141–51.PubMedPubMedCentralCrossRefGoogle Scholar
  325. 325.
    Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, et al. Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron. 2010;66:921–36.PubMedPubMedCentralCrossRefGoogle Scholar
  326. 326.
    Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R. Engineering a memory with LTD and LTP. Nature. 2014;511:348–52.PubMedPubMedCentralCrossRefGoogle Scholar
  327. 327.
    Tononi G, Cirelli C. Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull. 2003;62:143–50.PubMedPubMedCentralCrossRefGoogle Scholar
  328. 328.
    Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014;81:12–34.PubMedPubMedCentralCrossRefGoogle Scholar
  329. 329.
    Rasch B, Born J. About sleep’s role in memory. Physiol Rev. 2013;93:681–766.PubMedPubMedCentralCrossRefGoogle Scholar
  330. 330.
    Timofeev I, Chauvette S. Sleep slow oscillation and plasticity. Curr Opin Neurobiol. 2017;44:116–26.PubMedCrossRefGoogle Scholar
  331. 331.
    Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci. 2008;11:200–8.PubMedPubMedCentralCrossRefGoogle Scholar
  332. 332.
    Diering GH, Nirujogi RS, Roth RH, Worley PF, Pandey A, Huganir RL. Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science. 2017;355:511–5.PubMedPubMedCentralCrossRefGoogle Scholar
  333. 333.
    Liu Z-W, Faraguna U, Cirelli C, Tononi G, Gao X-B. Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. J Neurosci. 2010;30:8671–5.PubMedPubMedCentralCrossRefGoogle Scholar
  334. 334.
    Huber R, Maki H, Rosanova M, Casarotto S, Canali P, Casali AG, et al. Human cortical excitability increases with time awake. Cereb Cortex. 2013;23:1–7.CrossRefGoogle Scholar
  335. 335.
    Maret S, Faraguna U, Nelson AB, Cirelli C, Tononi G. Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nat Neurosci. 2011;14:1418–20.PubMedPubMedCentralCrossRefGoogle Scholar
  336. 336.
    de Vivo L, Bellesi M, Marshall W, Bushong EA, Ellisman MH, Tononi G, et al. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science. 2017;355:507–10.PubMedPubMedCentralCrossRefGoogle Scholar
  337. 337.
    Aton SJ, Seibt J, Dumoulin M, Jha SK, Steinmetz N, Coleman T, et al. Mechanisms of sleep-dependent consolidation of cortical plasticity. Neuron. 2009;61:454–66.PubMedPubMedCentralCrossRefGoogle Scholar
  338. 338.
    Seibt J, Dumoulin MC, Aton SJ, Coleman T, Watson A, Naidoo N, et al. Protein synthesis during sleep consolidates cortical plasticity in vivo. Curr Biol. 2012;22:676–82.PubMedPubMedCentralCrossRefGoogle Scholar
  339. 339.
    Elmenhorst D, Mertens K, Kroll T, Oskamp A, Ermert J, Elmenhorst E-M, et al. Circadian variation of metabotropic glutamate receptor 5 availability in the rat brain. J Sleep Res. 2016;25:754–61.PubMedCrossRefGoogle Scholar
  340. 340.
    del Cid-Pellitero E, Plavski A, Mainville L, Jones BE. Homeostatic changes in GABA and glutamate receptors on excitatory cortical neurons during sleep deprivation and recovery. Front Syst Neurosci. 2017;11:17.PubMedPubMedCentralGoogle Scholar
  341. 341.
    Aton SJ, Suresh A, Broussard C, Frank MG. Sleep promotes cortical response potentiation following visual experience. Sleep. 2014;37:1163–70.PubMedPubMedCentralCrossRefGoogle Scholar
  342. 342.
    Durkin J, Aton SJ. Sleep-dependent potentiation in the visual system is at odds with the synaptic homeostasis hypothesis. Sleep. 2016;39:155–9.PubMedPubMedCentralCrossRefGoogle Scholar
  343. 343.
    Durkin J, Suresh AK, Colbath J, Broussard C, Wu J, Zochowski M, et al. Cortically coordinated NREM thalamocortical oscillations play an essential, instructive role in visual system plasticity. Proc Natl Acad Sci U S A. 2017;114:10485–90.PubMedPubMedCentralCrossRefGoogle Scholar
  344. 344.
    Watson Brendon O, Levenstein D, Greene JP, Gelinas Jennifer N, Buzsáki G. Network homeostasis and state dynamics of neocortical sleep. Neuron. 2016;90:839–52.PubMedPubMedCentralCrossRefGoogle Scholar
  345. 345.
    Jasinska M, Grzegorczyk A, Woznicka O, Jasek E, Kossut M, Barbacka-Surowiak G, et al. Circadian rhythmicity of synapses in mouse somatosensory ortex. Eur J Neurosci. 2015;42:2585–94.PubMedCrossRefGoogle Scholar
  346. 346.
    Yang G, Lai CSW, Cichon J, Ma L, Li W, Gan W-B. Sleep promotes branch-specific formation of dendritic spines after learning. Science. 2014;344:1173–8.PubMedPubMedCentralCrossRefGoogle Scholar
  347. 347.
    Seibt J, Frank MG. Primed to sleep: the dynamics of synaptic plasticity across brain states. Front Syst Neurosci. 2019;13:2.PubMedPubMedCentralCrossRefGoogle Scholar
  348. 348.
    Bi GQ, Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci. 1998;18:10464–72.PubMedPubMedCentralCrossRefGoogle Scholar
  349. 349.
    Bi G-Q, Rubin J. Timing in synaptic plasticity: from detection to integration. Trends Neurosci. 2005;8:222–8.CrossRefGoogle Scholar
  350. 350.
    Gonzalez-Rueda A, Pedrosa V, Feord RC, Clopath C, Paulsen O. Activity-dependent downscaling of subthreshold synaptic inputs during slow-wave-sleep-like activity in vivo. Neuron. 2018;97:1244–52.e5.PubMedPubMedCentralCrossRefGoogle Scholar
  351. 351.
    Timofeev I, Chauvette S. Sleep, anesthesia, and plasticity. Neuron. 2018;97:1200–2.PubMedCrossRefGoogle Scholar
  352. 352.
    Kang S, Kitano K, Fukai T. Structure of spontaneous UP and DOWN transitions self-organizing in a cortical network model. PLoS Comput Biol. 2008;4:e1000022.PubMedPubMedCentralCrossRefGoogle Scholar
  353. 353.
    Olcese U, Esser SK, Tononi G. Sleep and synaptic renormalization: a computational study. J Neurophysiol. 2010;104:3476–93.PubMedPubMedCentralCrossRefGoogle Scholar
  354. 354.
    Wei Y, Krishnan GP, Bazhenov M. Synaptic mechanisms of memory consolidation during sleep slow oscillations. J Neurosci. 2016;36:4231–47.PubMedPubMedCentralCrossRefGoogle Scholar
  355. 355.
    Gais S, Molle M, Helms K, Born J. Learning-dependent increases in sleep spindle density. J Neurosci. 2002;22:6830–4.PubMedPubMedCentralCrossRefGoogle Scholar
  356. 356.
    Sejnowski TJ, Destexhe A. Why do we sleep? Brain Res. 2000;886:208–23.PubMedPubMedCentralCrossRefGoogle Scholar
  357. 357.
    Bergmann TO, Molle M, Diedrichs J, Born J, Siebner HR. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations. NeuroImage. 2012;9:2733–42.CrossRefGoogle Scholar
  358. 358.
    Eschenko O, Molle M, Born J, Sara SJ. Elevated sleep spindle density after learning or after retrieval in rats. J Neurosci. 2006;26:12914–20.PubMedPubMedCentralCrossRefGoogle Scholar
  359. 359.
    Morison RS, Dempsey EW. Mechanisms of thalamocortical augmentation and repetition. Am J Phys. 1943;138:297–308.CrossRefGoogle Scholar
  360. 360.
    Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Cellular and network models for intrathalamic augmenting responses during 10-Hz stimulation. J Neurophysiol. 1998;79:2730–48.PubMedCrossRefGoogle Scholar
  361. 361.
    Steriade M, Timofeev I, Grenier F, Durmuller N. Role of thalamic and cortical neurons in augmenting responses and self-sustained activity: dual intracellular recordings in vivo. J Neurosci. 1998;18:6425–43.PubMedPubMedCentralCrossRefGoogle Scholar
  362. 362.
    Castro-Alamancos MA, Connors BW. Short-term plasticity of a thalamocortical pathway dynamically modulated by behavioral state. Science. 1996;272:274–7.PubMedCrossRefGoogle Scholar
  363. 363.
    Castro-Alamancos MA, Connors BW. Spatiotemporal properties of short-term plasticity in sensorimotor thalamocortical pathways of the rat. J Neurosci. 1996;16:2767–79.PubMedPubMedCentralCrossRefGoogle Scholar
  364. 364.
    Castro-Alamancos MA, Connors BW. Cellular mechanisms of the augmenting response: short-term plasticity in a thalamocortical pathway. J Neurosci. 1996;16:7742–56.PubMedPubMedCentralCrossRefGoogle Scholar
  365. 365.
    Houweling AR, Bazhenov M, Timofeev I, Grenier F, Steriade M, Sejnowski TJ. Frequency-selective augmenting responses by short-term synaptic depression in cat neocortex. J Physiol. 2002;542:599–617.PubMedPubMedCentralCrossRefGoogle Scholar
  366. 366.
    Timofeev I, Grenier F, Bazhenov M, Houweling AR, Sejnowski TJ, Steriade M. Short- and medium-term plasticity associated with augmenting responses in cortical slabs and spindles in intact cortex of cats in vivo. J Physiol. 2002;542:583–98.PubMedPubMedCentralCrossRefGoogle Scholar
  367. 367.
    Abel T, Nguyen PV, Barad M, Deuel TA, Kandel ER, Bourtchouladze R. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell. 1997;88:615–26.PubMedCrossRefGoogle Scholar
  368. 368.
    Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MPA kinase pathway. Science. 2001;294:333.PubMedCrossRefGoogle Scholar
  369. 369.
    Dang-Vu TT, Bonjean M, Schabus M, Boly M, Darsaud A, Desseilles M, et al. Interplay between spontaneous and induced brain activity during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A. 2011;108:15438–43.PubMedPubMedCentralCrossRefGoogle Scholar
  370. 370.
    Latchoumane C-FV, Ngo H-VV, Born J, Shin H-S. Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron. 2017;95:424–35.e6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Psychiatry and NeuroscienceCERVO Brain Research CenterQuébecCanada
  2. 2.Department of NeuroscienceUniversity of California, San DiegoLa JollaUSA
  3. 3.Department of MedicineUniversity of California, San DiegoLa JollaUSA

Personalised recommendations