Advertisement

Pathological High-Frequency Oscillations in Mesial Temporal Lobe Epilepsy

Chapter
  • 303 Downloads

Abstract

Recent technological advances in signal acquisition and analysis have led to the discovery of high-frequency oscillatory events in animal models of mesial temporal lobe epilepsy (MTLE) and in the EEG of epileptic patients. These high-frequency oscillations (HFOs) in the 80–500 Hz frequency range are thought to reflect the activity of dysfunctional neuronal networks that may sustain epileptogenesis and ictogenesis. In this chapter, we review recent findings on HFOs in MTLE and their contribution to the identification of the pathophysiological mechanisms underlying the development of this epileptic condition. We describe the presumptive cellular and network mechanisms underlying ripples (80–200 Hz) and fast ripples (250–500 Hz) as well as their relation with interictal spikes and seizures. In addition, we discuss their contribution to epileptogenesis and ictogenesis in epileptic patients and animal models of MTLE.

Keywords

High-frequency oscillations Ripples Fast ripples Temporal lobe epilepsy Ictogenesis Epileptogenesis 

Notes

Acknowledgements

This review was supported by the Canadian Institutes of Health Research (CIHR grants 8109, 74609, 102710, and 38079). ML and CB were recipients of a post-doctoral fellowship from the Savoy Foundation for Epilepsy.

References

  1. 1.
    Cendes F, Andermann F, Dubeau F, Gloor P, Evans A, Jones-Gotman M, et al. Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy: an MRI volumetric study. Neurology. 1993;43(6):1083–7.PubMedCrossRefGoogle Scholar
  2. 2.
    French JA, Williamson PD, Thadani VM, Darcey TM, Mattson RH, Spencer SS, et al. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol. 1993;34(6):774–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Scharfman HE, Pedley TA. Temporal lobe epilepsy. In: Gilman S, editor. Neurobiology of disease. Burlington: Academic Press; 2007. p. 349–69.CrossRefGoogle Scholar
  4. 4.
    Spencer SS, Spencer DD. Entorhinal-hippocampal interactions in medial temporal lobe epilepsy. Epilepsia. 1994;35(4):721–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Engel J Jr, McDermott MP, Wiebe S, Langfitt JT, Stern JM, Dewar S, et al. Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA. 2012;307(9):922–30.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Buckmaster PS. Mossy fiber sprouting in the dentate gyrus. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s basic mechanisms of the epilepsies. 4th ed. Bethesda, MD: National Center for Biotechnology Information (US); 2012.Google Scholar
  7. 7.
    Berkovic SF, Andermann F, Olivier A, Ethier R, Melanson D, Robitaille Y, et al. Hippocampal sclerosis in temporal lobe epilepsy demonstrated by magnetic resonance imaging. Ann Neurol. 1991;29(2):175–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Gloor P. The temporal lobe and limbic system. New York: Oxford University Press; 1997.Google Scholar
  9. 9.
    Jackson GD, Berkovic SF, Tress BM, Kalnins RM, Fabinyi GC, Bladin PF. Hippocampal sclerosis can be reliably detected by magnetic resonance imaging. Neurology. 1990;40(12):1869–75.PubMedCrossRefGoogle Scholar
  10. 10.
    Thorn M. Neuropathologic findings in postmortem studies of sudden death in epilepsy. Epilepsia. 1997;38(11 Suppl):S32–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Bragin A, Engel J Jr, Wilson CL, Fried I, Mathern GW. Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid—treated rats with chronic seizures. Epilepsia. 1999;40(2):127–37.PubMedCrossRefGoogle Scholar
  12. 12.
    Staba RJ, Wilson CL, Bragin A, Fried I, Engel J Jr. Quantitative analysis of high-frequency oscillations (80-500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J Neurophysiol. 2002;88(4):1743–52.PubMedCrossRefGoogle Scholar
  13. 13.
    Jirsch JD, Urrestarazu E, LeVan P, Olivier A, Dubeau F, Gotman J. High-frequency oscillations during human focal seizures. Brain J Neurol. 2006;129(Pt 6):1593–608.CrossRefGoogle Scholar
  14. 14.
    Jacobs J, Zijlmans M, Zelmann R, Chatillon CE, Hall J, Olivier A, et al. High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol. 2010;67(2):209–20.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Okanishi T, Akiyama T, Tanaka SI, Mayo E, Mitsutake A, Boelman C, et al. Interictal high frequency oscillations correlating with seizure outcome in patients with widespread epileptic networks in tuberous sclerosis complex. Epilepsia. 2014;55(10):1602–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Jefferys JGR, Menendez de la Prida L, Wendling F, Bragin A, Avoli M, Timofeev I, et al. Mechanisms of physiological and epileptic HFO generation. Prog Neurobiol. 2012;98(3):250–64.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
  18. 18.
    Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science. 1994;265(5172):676–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Chrobak JJ, Buzsáki G. High-frequency oscillations in the output networks of the hippocampal–entorhinal axis of the freely behaving rat. J Neurosci. 1996;16(9):3056–66.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bragin A, Wilson CL, Staba RJ, Reddick M, Fried I, Engel J. Interictal high-frequency oscillations (80–500Hz) in the human epileptic brain: entorhinal cortex. Ann Neurol. 2002;52(4):407–15.PubMedCrossRefGoogle Scholar
  21. 21.
    Urrestarazu E, Chander R, Dubeau F, Gotman J. Interictal high-frequency oscillations (100–500 Hz) in the intracerebral EEG of epileptic patients. Brain. 2007;130(9):2354–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Lévesque M, Salami P, Gotman J, Avoli M. Two seizure-onset types reveal specific patterns of high-frequency oscillations in a model of temporal lobe epilepsy. J Neurosci. 2012;32(38):13264–72.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Perucca P, Dubeau F, Gotman J. Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology. Brain. 2014;137(Pt 1):183–96.PubMedCrossRefGoogle Scholar
  24. 24.
    Bragin A, Azizyan A, Almajano J, Wilson CL, Engel J. Analysis of chronic seizure onsets after intrahippocampal kainic acid injection in freely moving rats. Epilepsia. 2005;46(10):1592–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Buzsáki G, da Silva FL. High frequency oscillations in the intact brain. Prog Neurobiol. 2012;98(3):241–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K. High-frequency network oscillation in the hippocampus. Science. 1992;256(5059):1025–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Ponomarenko A. High-frequency oscillations in hippocampus and amygdala: modulation by ascending systems. Ph.D. Thesis, Düsseldorf: Heinrich-Heine University. 2003, 119 pages.Google Scholar
  28. 28.
    Ylinen A, Bragin A, Nádasdy Z, Jandó G, Szabó I, Sik A, et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci. 1995;15(1 Pt 1):30–46.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Buzsáki G, Chrobak JJ. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr Opin Neurobiol. 1995;5(4):504–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Csicsvari J, Hirase H, Czurkó A, Mamiya A, Buzsáki G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci. 1999;19(1):274–87.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Le Van Quyen M, Bragin A, Staba R, Crepon B, Wilson CL, Engel J. Cell type-specific firing during ripple oscillations in the hippocampal formation of humans. J Neurosci. 2008;28(24):6104–10.CrossRefGoogle Scholar
  32. 32.
    Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science. 2008;321(5885):53–7.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Klausberger T, Márton LF, Baude A, Roberts JDB, Magill PJ, Somogyi P. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci. 2004;7(1):41–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Stark E, Roux L, Eichler R, Senzai Y, Royer S, Buzsáki G. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations. Neuron. 2014;83(2):467–80.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Maier N, Tejero-Cantero Á, Dorrn AL, Winterer J, Beed PS, Morris G, et al. Coherent phasic excitation during hippocampal ripples. Neuron. 2011;72(1):137–52.PubMedCrossRefGoogle Scholar
  36. 36.
    Draguhn A, Traub RD, Schmitz D, Jefferys JG. Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature. 1998;394(6689):189–92.PubMedCrossRefGoogle Scholar
  37. 37.
    Grenier F, Timofeev I, Steriade M. Focal synchronization of ripples (80–200 Hz) in neocortex and their neuronal correlates. J Neurophysiol. 2001;86(4):1884–98.PubMedCrossRefGoogle Scholar
  38. 38.
    Simon A, Traub RD, Vladimirov N, Jenkins A, Nicholson C, Whittaker RG, et al. Gap junction networks can generate both ripple-like and fast ripple-like oscillations. Eur J Neurosci. 2014;39(1):46–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Traub RD, Schmitz D, Jefferys JG, Draguhn A. High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions. Neuroscience. 1999;92(2):407–26.PubMedCrossRefGoogle Scholar
  40. 40.
    Jefferys JGR, Jiruska P, de Curtis M, Avoli M. Limbic network synchronization and temporal lobe epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s basic mechanisms of the epilepsies. 4th ed. Bethesda, MD: National Center for Biotechnology Information (US); 2012.Google Scholar
  41. 41.
    Tamás G, Buhl EH, Lörincz A, Somogyi P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci. 2000;3(4):366–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Galarreta M, Hestrin S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature. 1999;402(6757):72–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Mancilla JG, Lewis TJ, Pinto DJ, Rinzel J, Connors BW. Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. J Neurosci. 2007;27(8):2058–73.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Fukuda T, Kosaka T. Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus. J Neurosci. 2000;20(4):1519–28.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Buzsáki G. Two-stage model of memory trace formation: a role for ‘noisy’ brain states. Neuroscience. 1989;31(3):551–70.PubMedCrossRefGoogle Scholar
  46. 46.
    Sadowski JHLP, Jones MW, Mellor JR. Ripples make waves: binding structured activity and plasticity in hippocampal networks. Neural Plast. 2011;2011:960389.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Girardeau G, Zugaro M. Hippocampal ripples and memory consolidation. Curr Opin Neurobiol. 2011;21(3):452–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Ponomarenko AA, Li JS, Korotkova TM, Huston JP, Haas HL. Frequency of network synchronization in the hippocampus marks learning. Eur J Neurosci. 2008;27(11):3035–42.PubMedCrossRefGoogle Scholar
  49. 49.
    Eschenko O, Ramadan W, Mölle M, Born J, Sara SJ. Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning. Learn Mem. 2008;15(4):222–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ramadan W, Eschenko O, Sara SJ. Hippocampal sharp wave/ripples during sleep for consolidation of associative memory. PLoS One. 2009;4(8):e6697.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB. Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci. 2009;12(10):1222–3.PubMedCrossRefGoogle Scholar
  52. 52.
    Axmacher N, Elger CE, Fell J. Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain J Neurol. 2008;131(Pt 7):1806–17.CrossRefGoogle Scholar
  53. 53.
    Ben-Ari Y, Lagowska J, Tremblay E, Le Gal La Salle G. A new model of focal status epilepticus: intra-amygdaloid application of kainic acid elicits repetitive secondarily generalized convulsive seizures. Brain Res. 1979;163(1):176–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Lévesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2887–99.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res. 1983;9(3):315–35.PubMedCrossRefGoogle Scholar
  56. 56.
    Curia G, Longo D, Biagini B, Jones RSG, Avoli M. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods. 2008;172(2):143–57.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bragin A, Wilson CL, Almajano J, Mody I, Engel J. High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis. Epilepsia. 2004;45(9):1017–23.PubMedCrossRefGoogle Scholar
  58. 58.
    Lévesque M, Bortel A, Gotman J, Avoli M. High-frequency (80-500 Hz) oscillations and epileptogenesis in temporal lobe epilepsy. Neurobiol Dis. 2011;42(3):231–41.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Staba RJ, Wilson CL, Bragin A, Jhung D, Fried I, Engel J Jr. High-frequency oscillations recorded in human medial temporal lobe during sleep. Ann Neurol. 2004;56(1):108–15.PubMedCrossRefGoogle Scholar
  60. 60.
    Bragin A, Engel J Jr, Wilson CL, Fried I, Buzsáki G. High-frequency oscillations in human brain. Hippocampus. 1999;9(2):137–42.PubMedCrossRefGoogle Scholar
  61. 61.
    Jacobs J, LeVan P, Chander R, Hall J, Dubeau F, Gotman J. Interictal high-frequency oscillations (80-500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia. 2008;49(11):1893–907.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Haegelen C, Perucca P, Châtillon CE, Andrade-Valença L, Zelmann R, Jacobs J, et al. High-frequency oscillations, extent of surgical resection, and surgical outcome in drug-resistant focal epilepsy. Epilepsia. 2013;54(5):848–57.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Engel J Jr, Bragin A, Staba R, Mody I. High-frequency oscillations: what is normal and what is not? Epilepsia. 2009;50(4):598–604.PubMedCrossRefGoogle Scholar
  64. 64.
    Matsumoto A, Brinkmann BH, Stead SM, Matsumoto J, Kucewicz MT, Marsh WR, et al. Pathological and physiological high-frequency oscillations in focal human epilepsy. J Neurophysiol. 2013;110(8):1958–64.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ogren JA, Wilson CL, Bragin A, Lin JJ, Salamon N, Dutton RA, et al. Three-dimensional surface maps link local atrophy and fast ripples in human epileptic hippocampus. Ann Neurol. 2009;66(6):783–91.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Velasco AL, Wilson CL, Babb TL, Engel J Jr. Functional and anatomic correlates of two frequently observed temporal lobe seizure-onset patterns. Neural Plast. 2000;7(1–2):49–63.PubMedCrossRefGoogle Scholar
  67. 67.
    Avoli M, de Curtis M. GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Prog Neurobiol. 2011;95(2):104–32.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Gnatkovsky V, Librizzi L, Trombin F, de Curtis M. Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro. Ann Neurol. 2008;64(6):674–86.PubMedCrossRefGoogle Scholar
  69. 69.
    Panuccio G, Sanchez G, Lévesque M, Salami P, de Curtis M, Avoli M. On the ictogenic properties of the piriform cortex in vitro. Epilepsia. 2012;53(3):459–68.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Avoli M, Panuccio G, Herrington R, D’Antuono M, de Guzman P, Lévesque M. Two different interictal spike patterns anticipate ictal activity in vitro. Neurobiol Dis. 2013;52:168–76.PubMedCrossRefGoogle Scholar
  71. 71.
    Kandel A, Buzsáki G. Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. J Neurosci. 1997;17(17):6783–97.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Curio G, Mackert BM, Burghoff M, Koetitz R, Abraham-Fuchs K, Härer W. Localization of evoked neuromagnetic 600 Hz activity in the cerebral somatosensory system. Electroencephalogr Clin Neurophysiol. 1994;91(6):483–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Ozaki I, Hashimoto I. Exploring the physiology and function of high-frequency oscillations (HFOs) from the somatosensory cortex. Clin Neurophysiol. 2011;122(10):1908–23.PubMedCrossRefGoogle Scholar
  74. 74.
    Barth DS. Submillisecond synchronization of fast electrical oscillations in neocortex. J Neurosci. 2003;23(6):2502–10.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Jones MS, Barth DS. Effects of bicuculline methiodide on fast (>200 Hz) electrical oscillations in rat somatosensory cortex. J Neurophysiol. 2002;88(2):1016–25.PubMedCrossRefGoogle Scholar
  76. 76.
    Danish SF, Moyer JT, Finkel LH, Baltuch GH, Jaggi JL, Priori A, et al. High-frequency oscillations (>200 Hz) in the human non-parkinsonian subthalamic nucleus. Brain Res Bull. 2007;74(1–3):84–90.PubMedCrossRefGoogle Scholar
  77. 77.
    Foffani G, Ardolino G, Rampini P, Tamma F, Caputo E, Egidi M, et al. Physiological recordings from electrodes implanted in the basal ganglia for deep brain stimulation in Parkinson’s disease. The relevance of fast subthalamic rhythms. Acta Neurochir Suppl. 2005;93:97–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Foffani G, Ardolino G, Egidi M, Caputo E, Bossi N, Priori A. Subthalamic oscillatory activities at beta or higher frequency do not change after high-frequency DBS in Parkinson’s disease. Brain Res Bull. 2006;69(2):123–30.PubMedCrossRefGoogle Scholar
  79. 79.
    Foffani G, Uzcategui YG, Gal B, Menendez de la Prida L. Reduced spike-timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus. Neuron. 2007;55(6):930–41.PubMedCrossRefGoogle Scholar
  80. 80.
    Özkurt TE, Butz M, Homburger M, Elben S, Vesper J, Wojtecki L, et al. High frequency oscillations in the subthalamic nucleus: a neurophysiological marker of the motor state in Parkinson’s disease. Exp Neurol. 2011;229(2):324–31.PubMedCrossRefGoogle Scholar
  81. 81.
    Bragin A, Mody I, Wilson CL, Engel J. Local generation of fast ripples in epileptic brain. J Neurosci. 2002;22(5):2012–21.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bragin A, Wilson CL, Enge J. Voltage depth profiles of high-frequency oscillations after kainic acid-induced status epilepticus. Epilepsia. 2007;48(s5):35–40.PubMedCrossRefGoogle Scholar
  83. 83.
    Bragin A, Benassi SK, Kheiri F, Engel J Jr. Further evidence that pathologic high-frequency oscillations are bursts of population spikes derived from recordings of identified cells in dentate gyrus. Epilepsia. 2011;52(1):45–52.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Dzhala VI, Staley KJ. Mechanisms of fast ripples in the hippocampus. J Neurosci. 2004;24(40):8896–906.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ibarz JM, Foffani G, Cid E, Inostroza M, Menendez de la Prida L. Emergent dynamics of fast ripples in the epileptic hippocampus. J Neurosci. 2010;30(48):16249–61.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Jiruska P, Finnerty GT, Powell AD, Lofti N, Cmejla R, Jefferys JGR. Epileptic high-frequency network activity in a model of non-lesional temporal lobe epilepsy. Brain. 2010;133(5):1380–90.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Staba RJ, Bergmann PC, Barth DS. Dissociation of slow waves and fast oscillations above 200 Hz during GABA application in rat somatosensory cortex. J Physiol. 2004;561(1):205–14.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ventura-Mejia C, Medina-Ceja L. Decreased fast ripples in the hippocampus of rats with spontaneous recurrent seizures treated with carbenoxolone and quinine. Biomed Res Int. 2014;2014:282490.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bragin A, Wilson CL, Engel J Jr. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia. 2000;41(Suppl 6):S144–52.PubMedCrossRefGoogle Scholar
  90. 90.
    Bragin A, Wilson CL, Engel J. Spatial stability over time of brain areas generating fast ripples in the epileptic rat. Epilepsia. 2003;44(9):1233–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Salami P, Lévesque M, Benini R, Behr C, Gotman J, Avoli M. Dynamics of interictal spikes and high-frequency oscillations during epileptogenesis in temporal lobe epilepsy. Neurobiol Dis. 2014;67C:97–106.CrossRefGoogle Scholar
  92. 92.
    Chauvière L, Doublet T, Ghestem A, Siyoucef SS, Wendling F, Huys R, et al. Changes in interictal spike features precede the onset of temporal lobe epilepsy. Ann Neurol. 2012;71(6):805–14.PubMedCrossRefGoogle Scholar
  93. 93.
    Wu JY, Sankar R, Lerner JT, Matsumoto JH, Vinters HV, Mathern GW. Removing interictal fast ripples on electrocorticography linked with seizure freedom in children. Neurology. 2010;75(19):1686–94.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zijlmans M, Jacobs J, Kahn YU, Zelmann R, Dubeau F, Gotman J. Ictal and interictal high frequency oscillations in patients with focal epilepsy. Clin Neurophysiol. 2011;122(4):664–71.PubMedCrossRefGoogle Scholar
  95. 95.
    Huberfeld G, Menendez de la Prida L, Pallud J, Cohen I, Le Van Quyen M, Adam C, et al. Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nat Neurosci. 2011;14(5):627–34.PubMedCrossRefGoogle Scholar
  96. 96.
    Perucca P, Dubeau F, Gotman J. Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology. Brain. 2014;37(Pt 1):183–96.CrossRefGoogle Scholar
  97. 97.
    Zijlmans M, Jacobs J, Zelmann R, Dubeau F, Gotman J. High-frequency oscillations mirror disease activity in patients with epilepsy. Neurology. 2009;72(11):979–86.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Neurology and NeurosurgeryMontreal Neurological Institute, McGill UniversityMontrealCanada

Personalised recommendations