Skip to main content

Pathological High-Frequency Oscillations in Mesial Temporal Lobe Epilepsy

  • Chapter
  • First Online:
  • 596 Accesses

Abstract

Recent technological advances in signal acquisition and analysis have led to the discovery of high-frequency oscillatory events in animal models of mesial temporal lobe epilepsy (MTLE) and in the EEG of epileptic patients. These high-frequency oscillations (HFOs) in the 80–500 Hz frequency range are thought to reflect the activity of dysfunctional neuronal networks that may sustain epileptogenesis and ictogenesis. In this chapter, we review recent findings on HFOs in MTLE and their contribution to the identification of the pathophysiological mechanisms underlying the development of this epileptic condition. We describe the presumptive cellular and network mechanisms underlying ripples (80–200 Hz) and fast ripples (250–500 Hz) as well as their relation with interictal spikes and seizures. In addition, we discuss their contribution to epileptogenesis and ictogenesis in epileptic patients and animal models of MTLE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cendes F, Andermann F, Dubeau F, Gloor P, Evans A, Jones-Gotman M, et al. Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy: an MRI volumetric study. Neurology. 1993;43(6):1083–7.

    Article  CAS  PubMed  Google Scholar 

  2. French JA, Williamson PD, Thadani VM, Darcey TM, Mattson RH, Spencer SS, et al. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol. 1993;34(6):774–80.

    Article  CAS  PubMed  Google Scholar 

  3. Scharfman HE, Pedley TA. Temporal lobe epilepsy. In: Gilman S, editor. Neurobiology of disease. Burlington: Academic Press; 2007. p. 349–69.

    Chapter  Google Scholar 

  4. Spencer SS, Spencer DD. Entorhinal-hippocampal interactions in medial temporal lobe epilepsy. Epilepsia. 1994;35(4):721–7.

    Article  CAS  PubMed  Google Scholar 

  5. Engel J Jr, McDermott MP, Wiebe S, Langfitt JT, Stern JM, Dewar S, et al. Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA. 2012;307(9):922–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buckmaster PS. Mossy fiber sprouting in the dentate gyrus. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s basic mechanisms of the epilepsies. 4th ed. Bethesda, MD: National Center for Biotechnology Information (US); 2012.

    Google Scholar 

  7. Berkovic SF, Andermann F, Olivier A, Ethier R, Melanson D, Robitaille Y, et al. Hippocampal sclerosis in temporal lobe epilepsy demonstrated by magnetic resonance imaging. Ann Neurol. 1991;29(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  8. Gloor P. The temporal lobe and limbic system. New York: Oxford University Press; 1997.

    Google Scholar 

  9. Jackson GD, Berkovic SF, Tress BM, Kalnins RM, Fabinyi GC, Bladin PF. Hippocampal sclerosis can be reliably detected by magnetic resonance imaging. Neurology. 1990;40(12):1869–75.

    Article  CAS  PubMed  Google Scholar 

  10. Thorn M. Neuropathologic findings in postmortem studies of sudden death in epilepsy. Epilepsia. 1997;38(11 Suppl):S32–4.

    Article  CAS  PubMed  Google Scholar 

  11. Bragin A, Engel J Jr, Wilson CL, Fried I, Mathern GW. Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid—treated rats with chronic seizures. Epilepsia. 1999;40(2):127–37.

    Article  CAS  PubMed  Google Scholar 

  12. Staba RJ, Wilson CL, Bragin A, Fried I, Engel J Jr. Quantitative analysis of high-frequency oscillations (80-500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J Neurophysiol. 2002;88(4):1743–52.

    Article  PubMed  Google Scholar 

  13. Jirsch JD, Urrestarazu E, LeVan P, Olivier A, Dubeau F, Gotman J. High-frequency oscillations during human focal seizures. Brain J Neurol. 2006;129(Pt 6):1593–608.

    Article  CAS  Google Scholar 

  14. Jacobs J, Zijlmans M, Zelmann R, Chatillon CE, Hall J, Olivier A, et al. High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol. 2010;67(2):209–20.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Okanishi T, Akiyama T, Tanaka SI, Mayo E, Mitsutake A, Boelman C, et al. Interictal high frequency oscillations correlating with seizure outcome in patients with widespread epileptic networks in tuberous sclerosis complex. Epilepsia. 2014;55(10):1602–10.

    Article  PubMed  Google Scholar 

  16. Jefferys JGR, Menendez de la Prida L, Wendling F, Bragin A, Avoli M, Timofeev I, et al. Mechanisms of physiological and epileptic HFO generation. Prog Neurobiol. 2012;98(3):250–64.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kubie J. The hippocampus as a cognitive map: the book. Review blog. http://www.brainfacts.org/brain-anatomy-and-function/anatomy/2014/the-hippocampus-as-a-cognitive-map-the-book.

  18. Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science. 1994;265(5172):676–9.

    Article  CAS  PubMed  Google Scholar 

  19. Chrobak JJ, Buzsáki G. High-frequency oscillations in the output networks of the hippocampal–entorhinal axis of the freely behaving rat. J Neurosci. 1996;16(9):3056–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bragin A, Wilson CL, Staba RJ, Reddick M, Fried I, Engel J. Interictal high-frequency oscillations (80–500Hz) in the human epileptic brain: entorhinal cortex. Ann Neurol. 2002;52(4):407–15.

    Article  PubMed  Google Scholar 

  21. Urrestarazu E, Chander R, Dubeau F, Gotman J. Interictal high-frequency oscillations (100–500 Hz) in the intracerebral EEG of epileptic patients. Brain. 2007;130(9):2354–66.

    Article  PubMed  Google Scholar 

  22. Lévesque M, Salami P, Gotman J, Avoli M. Two seizure-onset types reveal specific patterns of high-frequency oscillations in a model of temporal lobe epilepsy. J Neurosci. 2012;32(38):13264–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Perucca P, Dubeau F, Gotman J. Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology. Brain. 2014;137(Pt 1):183–96.

    Article  PubMed  Google Scholar 

  24. Bragin A, Azizyan A, Almajano J, Wilson CL, Engel J. Analysis of chronic seizure onsets after intrahippocampal kainic acid injection in freely moving rats. Epilepsia. 2005;46(10):1592–8.

    Article  PubMed  Google Scholar 

  25. Buzsáki G, da Silva FL. High frequency oscillations in the intact brain. Prog Neurobiol. 2012;98(3):241–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K. High-frequency network oscillation in the hippocampus. Science. 1992;256(5059):1025–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ponomarenko A. High-frequency oscillations in hippocampus and amygdala: modulation by ascending systems. Ph.D. Thesis, Düsseldorf: Heinrich-Heine University. 2003, 119 pages.

    Google Scholar 

  28. Ylinen A, Bragin A, Nádasdy Z, Jandó G, Szabó I, Sik A, et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci. 1995;15(1 Pt 1):30–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buzsáki G, Chrobak JJ. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr Opin Neurobiol. 1995;5(4):504–10.

    Article  PubMed  Google Scholar 

  30. Csicsvari J, Hirase H, Czurkó A, Mamiya A, Buzsáki G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci. 1999;19(1):274–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Le Van Quyen M, Bragin A, Staba R, Crepon B, Wilson CL, Engel J. Cell type-specific firing during ripple oscillations in the hippocampal formation of humans. J Neurosci. 2008;28(24):6104–10.

    Article  CAS  Google Scholar 

  32. Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science. 2008;321(5885):53–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klausberger T, Márton LF, Baude A, Roberts JDB, Magill PJ, Somogyi P. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci. 2004;7(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  34. Stark E, Roux L, Eichler R, Senzai Y, Royer S, Buzsáki G. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations. Neuron. 2014;83(2):467–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maier N, Tejero-Cantero Á, Dorrn AL, Winterer J, Beed PS, Morris G, et al. Coherent phasic excitation during hippocampal ripples. Neuron. 2011;72(1):137–52.

    Article  CAS  PubMed  Google Scholar 

  36. Draguhn A, Traub RD, Schmitz D, Jefferys JG. Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature. 1998;394(6689):189–92.

    Article  CAS  PubMed  Google Scholar 

  37. Grenier F, Timofeev I, Steriade M. Focal synchronization of ripples (80–200 Hz) in neocortex and their neuronal correlates. J Neurophysiol. 2001;86(4):1884–98.

    Article  CAS  PubMed  Google Scholar 

  38. Simon A, Traub RD, Vladimirov N, Jenkins A, Nicholson C, Whittaker RG, et al. Gap junction networks can generate both ripple-like and fast ripple-like oscillations. Eur J Neurosci. 2014;39(1):46–60.

    Article  PubMed  Google Scholar 

  39. Traub RD, Schmitz D, Jefferys JG, Draguhn A. High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions. Neuroscience. 1999;92(2):407–26.

    Article  CAS  PubMed  Google Scholar 

  40. Jefferys JGR, Jiruska P, de Curtis M, Avoli M. Limbic network synchronization and temporal lobe epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s basic mechanisms of the epilepsies. 4th ed. Bethesda, MD: National Center for Biotechnology Information (US); 2012.

    Google Scholar 

  41. Tamás G, Buhl EH, Lörincz A, Somogyi P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci. 2000;3(4):366–71.

    Article  PubMed  Google Scholar 

  42. Galarreta M, Hestrin S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature. 1999;402(6757):72–5.

    Article  CAS  PubMed  Google Scholar 

  43. Mancilla JG, Lewis TJ, Pinto DJ, Rinzel J, Connors BW. Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. J Neurosci. 2007;27(8):2058–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fukuda T, Kosaka T. Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus. J Neurosci. 2000;20(4):1519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Buzsáki G. Two-stage model of memory trace formation: a role for ‘noisy’ brain states. Neuroscience. 1989;31(3):551–70.

    Article  PubMed  Google Scholar 

  46. Sadowski JHLP, Jones MW, Mellor JR. Ripples make waves: binding structured activity and plasticity in hippocampal networks. Neural Plast. 2011;2011:960389.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Girardeau G, Zugaro M. Hippocampal ripples and memory consolidation. Curr Opin Neurobiol. 2011;21(3):452–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ponomarenko AA, Li JS, Korotkova TM, Huston JP, Haas HL. Frequency of network synchronization in the hippocampus marks learning. Eur J Neurosci. 2008;27(11):3035–42.

    Article  PubMed  Google Scholar 

  49. Eschenko O, Ramadan W, Mölle M, Born J, Sara SJ. Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning. Learn Mem. 2008;15(4):222–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ramadan W, Eschenko O, Sara SJ. Hippocampal sharp wave/ripples during sleep for consolidation of associative memory. PLoS One. 2009;4(8):e6697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB. Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci. 2009;12(10):1222–3.

    Article  CAS  PubMed  Google Scholar 

  52. Axmacher N, Elger CE, Fell J. Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain J Neurol. 2008;131(Pt 7):1806–17.

    Article  Google Scholar 

  53. Ben-Ari Y, Lagowska J, Tremblay E, Le Gal La Salle G. A new model of focal status epilepticus: intra-amygdaloid application of kainic acid elicits repetitive secondarily generalized convulsive seizures. Brain Res. 1979;163(1):176–9.

    Article  CAS  PubMed  Google Scholar 

  54. Lévesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2887–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res. 1983;9(3):315–35.

    Article  CAS  PubMed  Google Scholar 

  56. Curia G, Longo D, Biagini B, Jones RSG, Avoli M. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods. 2008;172(2):143–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bragin A, Wilson CL, Almajano J, Mody I, Engel J. High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis. Epilepsia. 2004;45(9):1017–23.

    Article  PubMed  Google Scholar 

  58. Lévesque M, Bortel A, Gotman J, Avoli M. High-frequency (80-500 Hz) oscillations and epileptogenesis in temporal lobe epilepsy. Neurobiol Dis. 2011;42(3):231–41.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Staba RJ, Wilson CL, Bragin A, Jhung D, Fried I, Engel J Jr. High-frequency oscillations recorded in human medial temporal lobe during sleep. Ann Neurol. 2004;56(1):108–15.

    Article  PubMed  Google Scholar 

  60. Bragin A, Engel J Jr, Wilson CL, Fried I, Buzsáki G. High-frequency oscillations in human brain. Hippocampus. 1999;9(2):137–42.

    Article  CAS  PubMed  Google Scholar 

  61. Jacobs J, LeVan P, Chander R, Hall J, Dubeau F, Gotman J. Interictal high-frequency oscillations (80-500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia. 2008;49(11):1893–907.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Haegelen C, Perucca P, Châtillon CE, Andrade-Valença L, Zelmann R, Jacobs J, et al. High-frequency oscillations, extent of surgical resection, and surgical outcome in drug-resistant focal epilepsy. Epilepsia. 2013;54(5):848–57.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Engel J Jr, Bragin A, Staba R, Mody I. High-frequency oscillations: what is normal and what is not? Epilepsia. 2009;50(4):598–604.

    Article  PubMed  Google Scholar 

  64. Matsumoto A, Brinkmann BH, Stead SM, Matsumoto J, Kucewicz MT, Marsh WR, et al. Pathological and physiological high-frequency oscillations in focal human epilepsy. J Neurophysiol. 2013;110(8):1958–64.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ogren JA, Wilson CL, Bragin A, Lin JJ, Salamon N, Dutton RA, et al. Three-dimensional surface maps link local atrophy and fast ripples in human epileptic hippocampus. Ann Neurol. 2009;66(6):783–91.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Velasco AL, Wilson CL, Babb TL, Engel J Jr. Functional and anatomic correlates of two frequently observed temporal lobe seizure-onset patterns. Neural Plast. 2000;7(1–2):49–63.

    Article  CAS  PubMed  Google Scholar 

  67. Avoli M, de Curtis M. GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Prog Neurobiol. 2011;95(2):104–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gnatkovsky V, Librizzi L, Trombin F, de Curtis M. Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro. Ann Neurol. 2008;64(6):674–86.

    Article  PubMed  Google Scholar 

  69. Panuccio G, Sanchez G, Lévesque M, Salami P, de Curtis M, Avoli M. On the ictogenic properties of the piriform cortex in vitro. Epilepsia. 2012;53(3):459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Avoli M, Panuccio G, Herrington R, D’Antuono M, de Guzman P, Lévesque M. Two different interictal spike patterns anticipate ictal activity in vitro. Neurobiol Dis. 2013;52:168–76.

    Article  PubMed  Google Scholar 

  71. Kandel A, Buzsáki G. Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. J Neurosci. 1997;17(17):6783–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Curio G, Mackert BM, Burghoff M, Koetitz R, Abraham-Fuchs K, Härer W. Localization of evoked neuromagnetic 600 Hz activity in the cerebral somatosensory system. Electroencephalogr Clin Neurophysiol. 1994;91(6):483–7.

    Article  CAS  PubMed  Google Scholar 

  73. Ozaki I, Hashimoto I. Exploring the physiology and function of high-frequency oscillations (HFOs) from the somatosensory cortex. Clin Neurophysiol. 2011;122(10):1908–23.

    Article  PubMed  Google Scholar 

  74. Barth DS. Submillisecond synchronization of fast electrical oscillations in neocortex. J Neurosci. 2003;23(6):2502–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jones MS, Barth DS. Effects of bicuculline methiodide on fast (>200 Hz) electrical oscillations in rat somatosensory cortex. J Neurophysiol. 2002;88(2):1016–25.

    Article  CAS  PubMed  Google Scholar 

  76. Danish SF, Moyer JT, Finkel LH, Baltuch GH, Jaggi JL, Priori A, et al. High-frequency oscillations (>200 Hz) in the human non-parkinsonian subthalamic nucleus. Brain Res Bull. 2007;74(1–3):84–90.

    Article  CAS  PubMed  Google Scholar 

  77. Foffani G, Ardolino G, Rampini P, Tamma F, Caputo E, Egidi M, et al. Physiological recordings from electrodes implanted in the basal ganglia for deep brain stimulation in Parkinson’s disease. The relevance of fast subthalamic rhythms. Acta Neurochir Suppl. 2005;93:97–9.

    Article  CAS  PubMed  Google Scholar 

  78. Foffani G, Ardolino G, Egidi M, Caputo E, Bossi N, Priori A. Subthalamic oscillatory activities at beta or higher frequency do not change after high-frequency DBS in Parkinson’s disease. Brain Res Bull. 2006;69(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  79. Foffani G, Uzcategui YG, Gal B, Menendez de la Prida L. Reduced spike-timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus. Neuron. 2007;55(6):930–41.

    Article  CAS  PubMed  Google Scholar 

  80. Özkurt TE, Butz M, Homburger M, Elben S, Vesper J, Wojtecki L, et al. High frequency oscillations in the subthalamic nucleus: a neurophysiological marker of the motor state in Parkinson’s disease. Exp Neurol. 2011;229(2):324–31.

    Article  PubMed  Google Scholar 

  81. Bragin A, Mody I, Wilson CL, Engel J. Local generation of fast ripples in epileptic brain. J Neurosci. 2002;22(5):2012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bragin A, Wilson CL, Enge J. Voltage depth profiles of high-frequency oscillations after kainic acid-induced status epilepticus. Epilepsia. 2007;48(s5):35–40.

    Article  CAS  PubMed  Google Scholar 

  83. Bragin A, Benassi SK, Kheiri F, Engel J Jr. Further evidence that pathologic high-frequency oscillations are bursts of population spikes derived from recordings of identified cells in dentate gyrus. Epilepsia. 2011;52(1):45–52.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dzhala VI, Staley KJ. Mechanisms of fast ripples in the hippocampus. J Neurosci. 2004;24(40):8896–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ibarz JM, Foffani G, Cid E, Inostroza M, Menendez de la Prida L. Emergent dynamics of fast ripples in the epileptic hippocampus. J Neurosci. 2010;30(48):16249–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jiruska P, Finnerty GT, Powell AD, Lofti N, Cmejla R, Jefferys JGR. Epileptic high-frequency network activity in a model of non-lesional temporal lobe epilepsy. Brain. 2010;133(5):1380–90.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Staba RJ, Bergmann PC, Barth DS. Dissociation of slow waves and fast oscillations above 200 Hz during GABA application in rat somatosensory cortex. J Physiol. 2004;561(1):205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ventura-Mejia C, Medina-Ceja L. Decreased fast ripples in the hippocampus of rats with spontaneous recurrent seizures treated with carbenoxolone and quinine. Biomed Res Int. 2014;2014:282490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Bragin A, Wilson CL, Engel J Jr. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia. 2000;41(Suppl 6):S144–52.

    Article  PubMed  Google Scholar 

  90. Bragin A, Wilson CL, Engel J. Spatial stability over time of brain areas generating fast ripples in the epileptic rat. Epilepsia. 2003;44(9):1233–7.

    Article  PubMed  Google Scholar 

  91. Salami P, Lévesque M, Benini R, Behr C, Gotman J, Avoli M. Dynamics of interictal spikes and high-frequency oscillations during epileptogenesis in temporal lobe epilepsy. Neurobiol Dis. 2014;67C:97–106.

    Article  Google Scholar 

  92. Chauvière L, Doublet T, Ghestem A, Siyoucef SS, Wendling F, Huys R, et al. Changes in interictal spike features precede the onset of temporal lobe epilepsy. Ann Neurol. 2012;71(6):805–14.

    Article  PubMed  Google Scholar 

  93. Wu JY, Sankar R, Lerner JT, Matsumoto JH, Vinters HV, Mathern GW. Removing interictal fast ripples on electrocorticography linked with seizure freedom in children. Neurology. 2010;75(19):1686–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zijlmans M, Jacobs J, Kahn YU, Zelmann R, Dubeau F, Gotman J. Ictal and interictal high frequency oscillations in patients with focal epilepsy. Clin Neurophysiol. 2011;122(4):664–71.

    Article  PubMed  Google Scholar 

  95. Huberfeld G, Menendez de la Prida L, Pallud J, Cohen I, Le Van Quyen M, Adam C, et al. Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nat Neurosci. 2011;14(5):627–34.

    Article  CAS  PubMed  Google Scholar 

  96. Perucca P, Dubeau F, Gotman J. Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology. Brain. 2014;37(Pt 1):183–96.

    Article  Google Scholar 

  97. Zijlmans M, Jacobs J, Zelmann R, Dubeau F, Gotman J. High-frequency oscillations mirror disease activity in patients with epilepsy. Neurology. 2009;72(11):979–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by the Canadian Institutes of Health Research (CIHR grants 8109, 74609, 102710, and 38079). ML and CB were recipients of a post-doctoral fellowship from the Savoy Foundation for Epilepsy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Lévesque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lévesque, M., Behr, C., Gotman, J., Avoli, M. (2020). Pathological High-Frequency Oscillations in Mesial Temporal Lobe Epilepsy. In: Dang-Vu, T., Courtemanche, R. (eds) Neuronal Oscillations of Wakefulness and Sleep. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0653-7_4

Download citation

Publish with us

Policies and ethics