Oscillations and Synchrony in Attention



Attention is one of the most important higher cognitive processes underlying the normal functioning of the human brain. It refers to a set of neural mechanisms that govern the selection and gating of sensory events, thoughts, and actions. Although psychologists have described this concept more than 100 years ago, until recently, underlying computational mechanisms and their neurophysiological implementation remained largely unknown. Research over the past decade has seen an increase of converging evidence that human brain oscillations are intimately linked to attention. Here, we discuss how brain oscillations are related to three major components of attention that contribute to the preferential processing of behaviourally relevant sensory input: first, the selective processing of attended stimuli; second, the suppression or filtering out of irrelevant information; and third, the dynamic allocation of processing resources. Finally, we review an integrative approach towards expressing attentional influences on perception by means of brain oscillations, and link it to a recent computational model of attention.


Selective attention Suppression Normalization model Brain oscillations Neural rhythms Communication through coherence (CTC) Phase reset Discrete sampling Cross-frequency coupling Fronto-parietal attention network 


  1. 1.
    Helmholtz H. Handbuch der physiologischen optik. Leipzig: L. Voss; 1867. p. 741.Google Scholar
  2. 2.
    Broadbent DE. Failures of attention in selective listening. J Exp Psychol. 1952;44(6):428–33.PubMedCrossRefGoogle Scholar
  3. 3.
    Posner MI, Petersen SE. The attention system of the human brain. Ann Rev Neurosci. 1990;13:25–42.PubMedCrossRefGoogle Scholar
  4. 4.
    Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Awh E, Belopolsky AV, Theeuwes J. Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends Cogn Sci. 2012;16(8):437–43.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Broadbent DE. Perception and communication. London: Pergamon Press; 1958.CrossRefGoogle Scholar
  7. 7.
    Treisman AM. The effect of irrelevant material on the efficiency of selective listening. Am J Psychol. 1964;77(4):533–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Posner MI, Snyder CR, Davidson BJ. Attention and the detection of signals. J Exp Psychol. 1980;109(2):160–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Eriksen CW, St. James JD. Visual-attention within and around the field of focal attention—a zoom lens model. Percept Psychophys. 1986;40(4):225–40.PubMedCrossRefGoogle Scholar
  10. 10.
    Treisman A. Features and objects: the fourteenth Bartlett memorial lecture. Q J Exp Psychol A. 1988;40(2):201–37.PubMedCrossRefGoogle Scholar
  11. 11.
    Wolfe JM. Guided search 2.0. A revised model of visual search. Psychon Bull Rev. 1994;1(2):202–38.PubMedCrossRefGoogle Scholar
  12. 12.
    Bundesen C. A computational theory of visual attention. Philos Trans R Soc Lond Ser B Biol Sci. 1998;353(1373):1271–81.CrossRefGoogle Scholar
  13. 13.
    Hillyard SA, Hink RF, Schwent VL, Picton TW. Electrical signs of selective attention in human brain. Science. 1973;182(4108):177–80.PubMedCrossRefGoogle Scholar
  14. 14.
    Moran J, Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science. 1985;229(4715):782–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222.PubMedCrossRefGoogle Scholar
  16. 16.
    Luck SJ, Chelazzi L, Hillyard SA, Desimone R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol. 1997;77(1):24–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Reynolds JH, Chelazzi L, Desimone R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci. 1999;19(5):1736–53.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kastner S, Ungerleider LG. The neural basis of biased competition in human visual cortex. Neuropsychologia. 2001;39(12):1263–76.PubMedCrossRefGoogle Scholar
  19. 19.
    Ungerleider LG, Kastner S. Mechanisms of visual attention in the human cortex. Ann Rev Neurosci. 2000;23(1):315–41.PubMedCrossRefGoogle Scholar
  20. 20.
    Pessoa L, Kastner S, Ungerleider LG. Neuroimaging studies of attention: from modulation of sensory processing to top-down control. J Neurosci. 2003;23(10):3990–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Andersen SK, Muller MM, Martinovic J. Bottom-up biases in feature-selective attention. J Neurosci. 2012;32(47):16953–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Keitel C, Andersen SK, Quigley C, Muller MM. Independent effects of attentional gain control and competitive interactions on visual stimulus processing. Cereb Cortex. 2013;23(4):940–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Reynolds JH, Heeger DJ. The normalization model of attention. Neuron. 2009;61(2):168–85.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Shipp S. The brain circuitry of attention. Trends Cogn Sci. 2004;8(5):223–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, et al. A common network of functional areas for attention and eye movements. Neuron. 1998;21(4):761–73.PubMedCrossRefGoogle Scholar
  26. 26.
    Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK. Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron. 2008;60(4):709–19.PubMedCrossRefGoogle Scholar
  27. 27.
    Buschman TJ, Miller EK. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science. 2007;315(5820):1860–2.PubMedCrossRefGoogle Scholar
  28. 28.
    Gregoriou GG, Gotts SJ, Zhou H, Desimone R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science. 2009;324(5931):1207–10.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Schnitzler A, Gross J. Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci. 2005;6(4):285–96.PubMedCrossRefGoogle Scholar
  30. 30.
    Regan D. Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. New York: Elsevier; 1989.Google Scholar
  31. 31.
    Keitel C, Quigley C, Ruhnau P. Stimulus-driven brain oscillations in the alpha range: entrainment of intrinsic rhythms or frequency-following response? J Neurosci. 2014;34(31):10137–40.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Andersen SK, Muller MM, Hillyard SA. Tracking the allocation of attention in visual scenes with steady-state evoked potentials. In: Posner MI, editor. Cognitive neuroscience of attention. 2nd ed. New York: Guilford; 2011. p. 197–216.Google Scholar
  33. 33.
    Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005;9(10):474–80.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Schroeder CE, Lakatos P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 2009;32(1):9–18.PubMedCrossRefGoogle Scholar
  35. 35.
    Gray CM, Konig P, Engel AK, Singer W. Oscillatory responses in cat visual-cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature. 1989;338(6213):334–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Borgers C, Kopell N. Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural Comput. 2005;17(3):557–608.PubMedCrossRefGoogle Scholar
  37. 37.
    Gray CM, Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual-cortex. Proc Natl Acad Sci U S A. 1989;86(5):1698–702.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Engel AK, Konig P, Kreiter AK, Gray CM, Singer W. Temporal coding by coherent oscillations as a potential solution to the binding problem—physiological evidence. Nonlinear Syst. 1991;2:3–25.Google Scholar
  39. 39.
    Muller MM, Junghofer M, Elbert T, Rochstroh B. Visually induced gamma-band responses to coherent and incoherent motion: a replication study. Neuroreport. 1997;8(11):2575–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Tallon-Baudry C. The roles of gamma-band oscillatory synchrony in human visual cognition. Front Biosci. 2009;14:321–32.CrossRefGoogle Scholar
  41. 41.
    Azouz R, Gray CM. Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron. 2003;37(3):513–23.PubMedCrossRefGoogle Scholar
  42. 42.
    Hasenstaub A, Shu YS, Haider B, Kraushaar U, Duque A, McCormick DA. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron. 2005;47(3):423–35.PubMedCrossRefGoogle Scholar
  43. 43.
    Womelsdorf T, Schoffelen J-M, Oostenveld R, Singer W, Desimone R, Engel AK, et al. Modulation of neuronal interactions through neuronal synchronization. Science. 2007;316(5831):1609–12.PubMedCrossRefGoogle Scholar
  44. 44.
    Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 2009;32:209–24.PubMedCrossRefGoogle Scholar
  45. 45.
    Buehlmann A, Deco G. Optimal information transfer in the cortex through synchronization. Plos Comput Biol. 2010;6(9). pii: e1000934.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 2000;38(3):301–13.CrossRefGoogle Scholar
  47. 47.
    Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304(5679):1926–9.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kopell N, Ermentrout GB, Whittington MA, Traub RD. Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci U S A. 2000;97(4):1867–72.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, et al. Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci U S A. 2004;101(35):13050–5.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hipp JF, Engel AK, Siegel M. Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron. 2011;69(2):387–96.PubMedCrossRefGoogle Scholar
  51. 51.
    Bosman CA, Lansink CS, Pennartz CM. Functions of gamma-band synchronization in cognition: from single circuits to functional diversity across cortical and subcortical systems. Eur J Neurosci. 2014;39(11):1982–99.PubMedCrossRefGoogle Scholar
  52. 52.
    Cannon J, McCarthy MM, Lee S, Lee J, Borgers C, Whittington MA, et al. Neurosystems: brain rhythms and cognitive processing. Eur J Neurosci. 2014;39(5):705–19.PubMedCrossRefGoogle Scholar
  53. 53.
    Lumer ED. Effects of spike timing on winner-take-all competition in model cortical circuits. Neural Comput. 2000;12(1):181–94.PubMedCrossRefGoogle Scholar
  54. 54.
    Fries P, Nikolic D, Singer W. The gamma cycle. Trends Neurosci. 2007;30(7):309–16.PubMedCrossRefGoogle Scholar
  55. 55.
    Roberts MJ, Lowet E, Brunet NM, Ter Wal M, Tiesinga P, Fries P, et al. Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching. Neuron. 2013;78(3):523–36.PubMedCrossRefGoogle Scholar
  56. 56.
    Bauer M, Oostenveld R, Peeters M, Fries P. Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J Neurosci. 2006;26(2):490–501.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gregoriou GG, Gotts SJ, Desimone R. Cell-type-specific synchronization of neural activity in FEF with V4 during attention. Neuron. 2012;73(3):581–94.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bosman CA, Schoffelen JM, Brunet N, Oostenveld R, Bastos AM, Womelsdorf T, et al. Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron. 2012;75(5):875–88.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Steinmann S, Leicht G, Ertl M, Andreou C, Polomac N, Westerhausen R, et al. Conscious auditory perception related to long-range synchrony of gamma oscillations. NeuroImage. 2014;100:435–43.PubMedCrossRefGoogle Scholar
  60. 60.
    Schoffelen JM, Poort J, Oostenveld R, Fries P. Selective movement preparation is subserved by selective increases in corticomuscular gamma-band coherence. J Neurosci. 2011;31(18):6750–8.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lisman JE, Jensen O. The theta-gamma neural code. Neuron. 2013;77(6):1002–16.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Hillyard SA, Vogel EK, Luck SJ. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos Trans R Soc Lond Ser B Biol Sci. 1998;353(1373):1257–70.CrossRefGoogle Scholar
  63. 63.
    Klimesch W, Sauseng P, Hanslmayr S, Gruber W, Freunberger R. Event-related phase reorganization may explain evoked neural dynamics. Neurosci Biobehav Rev. 2007;31(7):1003–16.PubMedCrossRefGoogle Scholar
  64. 64.
    Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, et al. Dynamic brain sources of visual evoked responses. Science. 2002;295(5555):690–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science. 2008;320(5872):110–3.PubMedCrossRefGoogle Scholar
  66. 66.
    Lakatos P, O’Connell MN, Barczak A, Mills A, Javitt DC, Schroeder CE. The leading sense: supramodal control of neurophysiological context by attention. Neuron. 2009;64(3):419–30.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Busse L, Roberts KC, Crist RE, Weissman DH, Woldorff MG. The spread of attention across modalities and space in a multisensory object. Proc Natl Acad Sci U S A. 2005;102(51):18751–6.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Talsma D, Senkowski D, Soto-Faraco S, Woldorff MG. The multifaceted interplay between attention and multisensory integration. Trends Cogn Sci. 2010;14(9):400–10.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kayser C, Ince RAA, Panzeri S. Analysis of slow (theta) oscillations as a potential temporal reference frame for information coding in sensory cortices. PLoS Comput Biol. 2012;8(10):e1002717.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Besle J, Schevon CA, Mehta AD, Lakatos P, Goodman RR, McKhann GM, et al. Tuning of the human neocortex to the temporal dynamics of attended events. J Neurosci. 2011;31(9):3176–85.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, Bauml K-H. Prestimulus oscillations predict visual perception performance between and within subjects. NeuroImage. 2007;37(4):1465–73.PubMedCrossRefGoogle Scholar
  72. 72.
    van Dijk H, Schoffelen J-M, Oostenveld R, Jensen O. Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci. 2008;28(8):1816–23.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Romei V, Rihs T, Brodbeck V, Thut G. Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability. Neuroreport. 2008;19(2):203–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Haegens S, Nácher V, Luna R, Romo R, Jensen O. α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc Natl Acad Sci U S A. 2011;108(48):19377–82.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Thut G, Nietzel A, Brandt SA, Pascual-Leone A. α-Band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci. 2006;26(37):9494–502.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kelly SP, Gomez-Ramirez M, Foxe JJ. The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study. Eur J Neurosci. 2009;30(11):2224–34.PubMedCrossRefGoogle Scholar
  77. 77.
    Gould IC, Rushworth MF, Nobre AC. Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations. J Neurophysiol. 2011;105(3):1318–26.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Rihs TA, Michel CM, Thut G. A bias for posterior alpha-band power suppression versus enhancement during shifting versus maintenance of spatial attention. NeuroImage. 2009;44(1):190–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Capilla A, Schoffelen JM, Paterson G, Thut G, Gross J. Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception. Cereb Cortex. 2014;24(2):550–61.PubMedCrossRefGoogle Scholar
  80. 80.
    Worden MS, Foxe JJ, Wang N, Simpson GV. Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci. 2000;20(6):Rc63.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Tan H-RM, Leuthold H, Gross J. Gearing up for action: attentive tracking dynamically tunes sensory and motor oscillations in the alpha and beta band. NeuroImage. 2013;82:634–44.PubMedCentralCrossRefGoogle Scholar
  82. 82.
    Snyder AC, Foxe JJ. Anticipatory attentional suppression of visual features indexed by oscillatory alpha-band power increases: a high-density electrical mapping study. J Neurosci. 2010;30(11):4024–32.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Jokisch D, Jensen O. Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. J Neurosci. 2007;27(12):3244–51.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    May ES, Butz M, Kahlbrock N, Hoogenboom N, Brenner M, Schnitzler A. Pre- and post-stimulus alpha activity shows differential modulation with spatial attention during the processing of pain. NeuroImage. 2012;62(3):1965–74.PubMedCrossRefGoogle Scholar
  85. 85.
    van Ede F, de Lange F, Jensen O, Maris E. Orienting attention to an upcoming tactile event involves a spatially and temporally specific modulation of sensorimotor alpha- and beta-band oscillations. J Neurosci. 2011;31(6):2016–24.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Haegens S, Händel BF, Jensen O. Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task. J Neurosci. 2011;31(14):5197–204.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Haegens S, Luther L, Jensen O. Somatosensory anticipatory alpha activity increases to suppress distracting input. J Cogn Neurosci. 2012;24(3):677–85.PubMedCrossRefGoogle Scholar
  88. 88.
    Fu KM, Foxe JJ, Murray MM, Higgins BA, Javitt DC, Schroeder CE. Attention-dependent suppression of distracter visual input can be cross-modally cued as indexed by anticipatory parieto-occipital alpha-band oscillations. Brain Res Cogn Brain Res. 2001;12(1):145–52.PubMedCrossRefGoogle Scholar
  89. 89.
    Bauer M, Kennett S, Driver J. Attentional selection of location and modality in vision and touch modulates low-frequency activity in associated sensory cortices. J Neurophysiol. 2012;107(9):2342–51.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Frey JN, Mainy N, Lachaux J-P, Müller N, Bertrand O, Weisz N. Selective modulation of auditory cortical alpha activity in an audiovisual spatial attention task. J Neurosci. 2014;34(19):6634–9.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hwang K, Ghuman AS, Manoach DS, Jones SR, Luna B. Cortical neurodynamics of inhibitory control. J Neurosci. 2014;34(29):9551–61.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol. 2011;21(14):1176–85.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Romei V, Gross J, Thut G. On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? J Neurosci. 2010;30(25):8692–7.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Buffalo EA, Fries P, Landman R, Liang H, Desimone R. A backward progression of attentional effects in the ventral stream. Proc Natl Acad Sci U S A. 2010;107(1):361–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Nobre AC, Rohenkohl G, Stokes M. Nervous anticipation: top-down biasing across space and time. In: Posner MI, editor. Cognitive neuroscience of sttention. 2nd ed. New York: Guilford; 2012. p. 159–86.Google Scholar
  96. 96.
    Rohenkohl G, Cravo AM, Wyart V, Nobre AC. Temporal expectation improves the quality of sensory information. J Neurosci. 2012;32(24):8424–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Large EW, Jones MR. The dynamics of attending: how people track time-varying events. Psychol Rev. 1999;106(1):119–59.CrossRefGoogle Scholar
  98. 98.
    Jones MR. Time, our lost dimension—toward a new theory of perception, attention, and memory. Psychol Rev. 1976;83(5):323–55.PubMedCrossRefGoogle Scholar
  99. 99.
    Henry MJ, Herrmann B. Low-frequency neural oscillations support dynamic attending in temporal context. Timing Time Percept. 2014;2(1):62–86.CrossRefGoogle Scholar
  100. 100.
    Busch NA, Dubois J, VanRullen R. The phase of ongoing EEG oscillations predicts visual perception. J Neurosci. 2009;29(24):7869–76.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    VanRullen R, Busch NA, Drewes J, Dubois J. Ongoing EEG phase as a trial-by-trial predictor of perceptual and attentional variability. Front Psychol. 2011;2:60.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Henry MJ, Obleser J. Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proc Natl Acad Sci U S A. 2012;109(49):20095–100.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    de Graaf TA, Gross J, Paterson G, Rusch T, Sack AT, Thut G. Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation. PLoS One. 2013;8(3):e60035.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Mathewson KE, Fabiani M, Gratton G, Beck DM, Lleras A. Rescuing stimuli from invisibility: inducing a momentary release from visual masking with pre-target entrainment. Cognition. 2010;115(1):186–91.PubMedCrossRefGoogle Scholar
  105. 105.
    Spaak E, de Lange FP, Jensen O. Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. J Neurosci. 2014;34(10):3536–44.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Gross J, Hoogenboom N, Thut G, Schyns P, Panzeri S, Belin P, et al. Speech rhythms and multiplexed oscillatory sensory coding in the human brain. PLoS Biol. 2013;11(12):e1001752.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zion Golumbic EM, Ding N, Bickel S, Lakatos P, Schevon CA, McKhann GM, et al. Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron. 2013;77(5):980–91.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Schroeder CE, Wilson DA, Radman T, Scharfman H, Lakatos P. Dynamics of active sensing and perceptual selection. Curr Opin Neurobiol. 2010;20(2):172–6.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Otero-Millan J, Troncoso XG, Macknik SL, Serrano-Pedraza I, Martinez-Conde S. Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator. J Vis. 2008;8(14):21.1–18.CrossRefGoogle Scholar
  110. 110.
    Navarra J, Soto-Faraco S, Spence C. Discriminating speech rhythms in audition, vision, and touch. Acta Psychol. 2014;151:197–205.CrossRefGoogle Scholar
  111. 111.
    Ahissar E, Zacksenhouse M. Temporal and spatial coding in the rat vibrissal system. Prog Brain Res. 2001;130:75–87.PubMedCrossRefGoogle Scholar
  112. 112.
    Gross J, Timmermann J, Kujala J, Dirks M, Schmitz F, Salmelin R, et al. The neural basis of intermittent motor control in humans. Proc Natl Acad Sci U S A. 2002;99(4):2299–302.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Pollok B, Gross J, Dirks M, Timmermann L, Schnitzler A. The cerebral oscillatory network of voluntary tremor. J Physiol-London. 2004;554(3):871–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Melloni L, Schwiedrzik CM, Rodriguez E, Singer W. (Micro)Saccades, corollary activity and cortical oscillations. Trends Cogn Sci. 2009;13(6):239–45.PubMedCrossRefGoogle Scholar
  115. 115.
    Drewes J, VanRullen R. This is the rhythm of your eyes: the phase of ongoing electroencephalogram oscillations modulates saccadic reaction time. J Neurosci. 2011;31(12):4698–708.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Deschenes M, Moore J, Kleinfeld D. Sniffing and whisking in rodents. Curr Opin Neurobiol. 2012;22(2):243–50.PubMedCrossRefGoogle Scholar
  117. 117.
    Rajkai C, Lakatos P, Chen CM, Pincze Z, Karmos G, Schroeder CE. Transient cortical excitation at the onset of visual fixation. Cereb Cortex. 2008;18(1):200–9.PubMedCrossRefGoogle Scholar
  118. 118.
    VanRullen R, Zoefel B, Ilhan B. On the cyclic nature of perception in vision versus audition. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1641):20130214.CrossRefGoogle Scholar
  119. 119.
    Nobre AC, Gitelman DR, Dias EC, Mesulam MM. Covert visual spatial orienting and saccades: overlapping neural systems. NeuroImage. 2000;11(3):210–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Buschman TJ, Miller EK. Serial, covert shifts of attention during visual search are reflected by the frontal eye fields and correlated with population oscillations. Neuron. 2009;63(3):386–96.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    VanRullen R, Macdonald JSP. Perceptual echoes at 10 Hz in the human brain. Curr Biol. 2012;22(11):995–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T. To see or not to see: prestimulus alpha phase predicts visual awareness. J Neurosci. 2009;29(9):2725–32.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Busch NA, VanRullen R. Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proc Natl Acad Sci U S A. 2010;107(37):16048–53.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    VanRullen R, Carlson T, Cavanagh P. The blinking spotlight of attention. Proc Natl Acad Sci U S A. 2007;104(49):19204–9.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Fiebelkorn IC, Saalmann YB, Kastner S. Rhythmic sampling within and between objects despite sustained attention at a cued location. Curr Biol. 2013;23(24):2553–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Landau A, Fries P. Attention samples stimuli rhythmically. Curr Biol. 2012;22(11):1000–4.PubMedCrossRefGoogle Scholar
  127. 127.
    Dugue L, Vanrullen R. The dynamics of attentional sampling during visual search revealed by Fourier analysis of periodic noise interference. J Vis. 2014;14(2). pii:11.PubMedCrossRefGoogle Scholar
  128. 128.
    Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11(7):267–9.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Canolty RT, Knight RT. The functional role of cross-frequency coupling. Trends Cogn Sci. 2010;14(11):506–15.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Jensen O, Gips B, Bergmann TO, Bonnefond M. Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci. 2014;37(7):357–69.PubMedCrossRefGoogle Scholar
  131. 131.
    Corbetta M. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc Natl Acad Sci U S A. 1998;95(3):831–8.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Kayser C, Petkov CI, Logothetis NK. Visual modulation of neurons in auditory cortex. Cereb Cortex. 2008;18(7):1560–74.PubMedCrossRefGoogle Scholar
  133. 133.
    Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J Neurophysiol. 2005;94(3):1904–11.PubMedCrossRefGoogle Scholar
  134. 134.
    Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313(5793):1626–8.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Arnal LH, Doelling KB, Poeppel D. Delta-beta coupled oscillations underlie temporal prediction accuracy. Cereb Cortex. 2015;25(9):3077–85.PubMedCrossRefGoogle Scholar
  136. 136.
    Cohen MX, Elger CE, Fell J. Oscillatory activity and phase-amplitude coupling in the human medial frontal cortex during decision making. J Cogn Neurosci. 2009;21(2):390–402.PubMedCrossRefGoogle Scholar
  137. 137.
    Szczepanski SM, Crone NE, Kuperman RA, Auguste KI, Parvizi J, Knight RT. Dynamic changes in phase-amplitude coupling facilitate spatial attention control in fronto-parietal cortex. PLoS Biol. 2014;12(8):e1001936.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Montijn JS, Klink PC, van Wezel RJ. Divisive normalization and neuronal oscillations in a single hierarchical framework of selective visual attention. Front Neural Circuits. 2012;6:22.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Dugue L, Marque P, VanRullen R. The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. J Neurosci. 2011;31(33):11889–93.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of StirlingStirlingUK
  2. 2.Centre of Cognitive NeuroimagingInstitute of Neuroscience and Psychology, University of GlasgowGlasgowUK
  3. 3.Institute of Neuroscience and PsychologyGlasgowUK

Personalised recommendations