Theta Rhythm in Hippocampus and Cognition



Theta rhythm is a large 4–12 Hz oscillatory activity that is predominant during wake and REM (rapid eye movement) sleep in the hippocampus. Theta rhythm is generated by the interplay between neurons from the medial septum and entorhinal cortex, with local oscillators within the hippocampus. These intrinsic hippocampal oscillators arise from the interaction between pyramidal cells and specific subtypes of interneurons. Theta contributes to the formation of place cell assemblies important for memory and navigation. In addition, theta in hippocampus can control spiking and computations in other brain regions such as the prefrontal cortex, the amygdala, and striatum, and contribute to different cognitive tasks such as working memory, fear conditioning, motivation, and reward. As such, theta rhythm in hippocampus plays a critical role in providing spatial and contextual information locally and throughout the brain.


Theta rhythm Oscillators Hippocampus Memory Cognition Long-range communication 


  1. 1.
    Buzsaki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13(6):407–20.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001;2(4):229–39.PubMedCrossRefGoogle Scholar
  3. 3.
    Buzsaki G. Rhythms of the brain. Oxford: Oxford University Press; 2006.CrossRefGoogle Scholar
  4. 4.
    Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ. Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci. 2002;25(10):525–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Le Van Quyen M, Martinerie J, Navarro V, Boon P, D’Have M, Adam C, et al. Anticipation of epileptic seizures from standard EEG recordings. Lancet. 2001;357(9251):183–8.CrossRefGoogle Scholar
  6. 6.
    Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11(2):100–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Andersen PM, Morris R, Amaral D, Bliss T, O’Keefe J. The hippocampus book. Oxford: Oxford University Press; 2006.CrossRefGoogle Scholar
  8. 8.
    Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20(1):11–21.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rempel-Clower NL, Zola SM, Squire LR, Amaral DG. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J Neurosci. 1996;16(16):5233–55.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zola-Morgan S, Squire LR, Amaral DG. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986;6(10):2950–67.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Morris RG, Garrud P, Rawlins JN, O’Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297(5868):681–3.PubMedCrossRefGoogle Scholar
  12. 12.
    Moser MB, Moser EI. Functional differentiation in the hippocampus. Hippocampus. 1998;8(6):608–19.PubMedCrossRefGoogle Scholar
  13. 13.
    Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992;106(2):274–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Lavenex PB, Amaral DG, Lavenex P. Hippocampal lesion prevents spatial relational learning in adult macaque monkeys. J Neurosci. 2006;26(17):4546–58.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Zola-Morgan S, Squire LR. Memory impairment in monkeys following lesions limited to the hippocampus. Behav Neurosci. 1986;100(2):155–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Anderson MI, Jeffery KJ. Heterogeneous modulation of place cell firing by changes in context. J Neurosci. 2003;23(26):8827–35.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Battaglia FP, Benchenane K, Sirota A, Pennartz CM, Wiener SI. The hippocampus: hub of brain network communication for memory. Trends Cogn Sci. 2011;15(7):310–8.PubMedGoogle Scholar
  18. 18.
    Kay LM. Theta oscillations and sensorimotor performance. Proc Natl Acad Sci U S A. 2005;102(10):3863–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Vargas JP, Siegel JJ, Bingman VP. The effects of a changing ambient magnetic field on single-unit activity in the homing pigeon hippocampus. Brain Res Bull. 2006;70(2):158–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Vinnik E, Antopolskiy S, Itskov PM, Diamond ME. Auditory stimuli elicit hippocampal neuronal responses during sleep. Front Syst Nneurosci. 2012;6:49.Google Scholar
  21. 21.
    Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304(5679):1926–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G. Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci. 1995;15(1 Pt 1):47–60.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Jacobs J, Kahana MJ. Neural representations of individual stimuli in humans revealed by gamma-band electrocorticographic activity. J Neurosci. 2009;29(33):10203–14.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol. 1969;26(4):407–18.PubMedCrossRefGoogle Scholar
  25. 25.
    Green JD, Arduini AA. Hippocampal electrical activity in arousal. J Neurophysiol. 1954;17(6):533–57.PubMedCrossRefGoogle Scholar
  26. 26.
    Ulanovsky N, Moss CF. Hippocampal cellular and network activity in freely moving echolocating bats. Nat Neurosci. 2007;10(2):224–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Jutras MJ, Fries P, Buffalo EA. Oscillatory activity in the monkey hippocampus during visual exploration and memory formation. Proc Natl Acad Sci U S A. 2013;110(32):13144–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Jacobs J. Hippocampal theta oscillations are slower in humans than in rodents: implications for models of spatial navigation and memory. Philos Trans R Soc Lond Ser B Biol Sci. 2013;369(1635):20130304.CrossRefGoogle Scholar
  29. 29.
    Kahana MJ, Sekuler R, Caplan JB, Kirschen M, Madsen JR. Human theta oscillations exhibit task dependence during virtual maze navigation. Nature. 1999;399(6738):781–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Bland BH, Oddie SD. Theta band oscillation and synchrony in the hippocampal formation and associated structures: the case for its role in sensorimotor integration. Behav Brain Res. 2001;127(1-2):119–36.PubMedCrossRefGoogle Scholar
  31. 31.
    Buzsaki G. The hippocampo-neocortical dialogue. Cereb Cortex. 1996;6(2):81–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Montgomery SM, Sirota A, Buzsaki G. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J Neurosci. 2008;28(26):6731–41.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gray JA. Sodium amobarbital, the hippocampal theta rhythm, and the partial reinforcement extinction effect. Psychol Rev. 1970;77(5):465–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Adey WR, Dunlop CW, Hendrix CE. Hippocampal slow waves. Distribution and phase relationships in the course of approach learning. Arch Neurol. 1960;3:74–90.PubMedCrossRefGoogle Scholar
  35. 35.
    Bennett TL, Gottfried J. Hippocampal theta activity and response inhibition. Electroencephalogr Clin Neurophysiol. 1970;29(2):196–200.PubMedCrossRefGoogle Scholar
  36. 36.
    Berry SD, Seager MA. Hippocampal theta oscillations and classical conditioning. Neurobiol Learn Mem. 2001;76(3):298–313.PubMedCrossRefGoogle Scholar
  37. 37.
    Grastyan E, Lissak K, Madarasz I, Donhoffer H. Hippocampal electrical activity during the development of conditioned reflexes. Electroencephalogr Clin Neurophysiol. 1959;11(3):409–30.PubMedCrossRefGoogle Scholar
  38. 38.
    Buzsaki G. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus. 2005;15(7):827–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Buzsaki G. Theta oscillations in the hippocampus. Neuron. 2002;33(3):325–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Ramón y Cajal S. Histology of the nervous system of man and vertebrates, vol. II. Oxford: Oxford University Press; 1893.Google Scholar
  41. 41.
    Andersen P, Blackstad TW, Lomo T. Location and identification of excitatory synapses on hippocampal pyramidal cells. Exp Brain Res. 1966;1(3):236–48.PubMedCrossRefGoogle Scholar
  42. 42.
    Blackstad TW, Brink K, Hem J, Jeune B. Distribution of hippocampal mossy fibers in the rat. An experimental study with silver impregnation methods. J Comp Neurol. 1970;138(4):433–49.PubMedCrossRefGoogle Scholar
  43. 43.
    Hjorth-Simonsen A, Jeune B. Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J Comp Neurol. 1972;144(2):215–32.PubMedCrossRefGoogle Scholar
  44. 44.
    Baks-Te Bulte L, Wouterlood FG, Vinkenoog M, Witter MP. Entorhinal projections terminate onto principal neurons and interneurons in the subiculum: a quantitative electron microscopical analysis in the rat. Neuroscience. 2005;136(3):729–39.PubMedCrossRefGoogle Scholar
  45. 45.
    Kerr KM, Agster KL, Furtak SC, Burwell RD. Functional neuroanatomy of the parahippocampal region: the lateral and medial entorhinal areas. Hippocampus. 2007;17(9):697–708.PubMedCrossRefGoogle Scholar
  46. 46.
    van Strien NM, Cappaert NL, Witter MP. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci. 2009;10(4):272–82.PubMedCrossRefGoogle Scholar
  47. 47.
    Ishizuka N, Weber J, Amaral DG. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol. 1990;295(4):580–623.PubMedCrossRefGoogle Scholar
  48. 48.
    Li XG, Somogyi P, Ylinen A, Buzsaki G. The hippocampal CA3 network: an in vivo intracellular labeling study. J Comp Neurol. 1994;339(2):181–208.PubMedCrossRefGoogle Scholar
  49. 49.
    Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407):31–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Nicoll RA, Malenka RC. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature. 1995;377(6545):115–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Sarvey JM, Burgard EC, Decker G. Long-term potentiation: studies in the hippocampal slice. J Neurosci Methods. 1989;28(1-2):109–24.PubMedCrossRefGoogle Scholar
  52. 52.
    Amaral DG, Dolorfo C, Alvarez-Royo P. Organization of CA1 projections to the subiculum: a PHA-L analysis in the rat. Hippocampus. 1991;1(4):415–35.PubMedCrossRefGoogle Scholar
  53. 53.
    Witter MP, Naber PA, van Haeften T, Machielsen WC, Rombouts SA, Barkhof F, et al. Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways. Hippocampus. 2000;10(4):398–410.PubMedCrossRefGoogle Scholar
  54. 54.
    Commins S, Gigg J, Anderson M, O’Mara SM. The projection from hippocampal area CA1 to the subiculum sustains long-term potentiation. Neuroreport. 1998;9(5):847–50.PubMedCrossRefGoogle Scholar
  55. 55.
    O’Mara SM, Commins S, Anderson M. Synaptic plasticity in the hippocampal area CA1-subiculum projection: implications for theories of memory. Hippocampus. 2000;10(4):447–56.PubMedCrossRefGoogle Scholar
  56. 56.
    Naber PA, Witter MP, Lopes Silva FH. Networks of the hippocampal memory system of the rat. The pivotal role of the subiculum. Ann N Y Acad Sci. 2000;911:392–403.PubMedCrossRefGoogle Scholar
  57. 57.
    Risold PY, Swanson LW. Structural evidence for functional domains in the rat hippocampus. Science. 1996;272(5267):1484–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Witter MP. Connections of the subiculum of the rat: topography in relation to columnar and laminar organization. Behav Brain Res. 2006;174(2):251–64.PubMedCrossRefGoogle Scholar
  59. 59.
    Sun Y, Nguyen AQ, Nguyen JP, Le L, Saur D, Choi J, et al. Cell-type-specific circuit connectivity of hippocampal CA1 revealed through Cre-dependent rabies tracing. Cell Rep. 2014;7(1):269–80.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Jackson J, Amilhon B, Goutagny R, Bott JB, Manseau F, Kortleven C, et al. Reversal of theta rhythm flow through intact hippocampal circuits. Nat Neurosci. 2014;17(10):1362–70.PubMedCrossRefGoogle Scholar
  61. 61.
    Chevaleyre V, Siegelbaum SA. Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron. 2010;66(4):560–72.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Jones MW, McHugh TJ. Updating hippocampal representations: CA2 joins the circuit. Trends Neurosci. 2011;34(10):526–35.PubMedCrossRefGoogle Scholar
  63. 63.
    Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65(1):7–19.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Thompson CL, Pathak SD, Jeromin A, Ng LL, MacPherson CR, Mortrud MT, et al. Genomic anatomy of the hippocampus. Neuron. 2008;60(6):1010–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Dougherty KA, Islam T, Johnston D. Intrinsic excitability of CA1 pyramidal neurones from the rat dorsal and ventral hippocampus. J Physiol. 2012;590(Pt 22):5707–22.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jung MW, Wiener SI, McNaughton BL. Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J Neurosci. 1994;14(12):7347–56.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, et al. Finite scale of spatial representation in the hippocampus. Science. 2008;321(5885):140–3.PubMedCrossRefGoogle Scholar
  68. 68.
    Poucet B, Thinus-Blanc C, Muller RU. Place cells in the ventral hippocampus of rats. Neuroreport. 1994;5(16):2045–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Royer S, Sirota A, Patel J, Buzsaki G. Distinct representations and theta dynamics in dorsal and ventral hippocampus. J Neurosci. 2010;30(5):1777–87.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Gu N, Jackson J, Goutagny R, Lowe G, Manseau F, Williams S. NMDA-dependent phase synchronization between septal and temporal CA3 hippocampal networks. J Neurosci. 2013;33(19):8276–87.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kamondi A, Acsady L, Wang XJ, Buzsaki G. Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus. 1998;8(3):244–61.PubMedCrossRefGoogle Scholar
  72. 72.
    Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. Spatial representation in the entorhinal cortex. Science. 2004;305(5688):1258–64.PubMedCrossRefGoogle Scholar
  73. 73.
    Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436(7052):801–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Langston RF, Ainge JA, Couey JJ, Canto CB, Bjerknes TL, Witter MP, et al. Development of the spatial representation system in the rat. Science. 2010;328(5985):1576–80.PubMedCrossRefGoogle Scholar
  75. 75.
    Wills TJ, Cacucci F, Burgess N, O’Keefe J. Development of the hippocampal cognitive map in preweanling rats. Science. 2010;328(5985):1573–6.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science. 2011;332(6029):595–9.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Koenig J, Linder AN, Leutgeb JK, Leutgeb S. The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science. 2011;332(6029):592–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Yartsev MM, Witter MP, Ulanovsky N. Grid cells without theta oscillations in the entorhinal cortex of bats. Nature. 2011;479(7371):103–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Newman EL, Hasselmo ME. Grid cell firing properties vary as a function of theta phase locking preferences in the rat medial entorhinal cortex. Front Syst Neurosci. 2014;8:193.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Brun VH, Leutgeb S, Wu HQ, Schwarcz R, Witter MP, Moser EI, et al. Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex. Neuron. 2008;57(2):290–302.PubMedCrossRefGoogle Scholar
  81. 81.
    Schlesiger MI, Cannova CC, Boublil BL, Hales JB, Mankin EA, Brandon MP, et al. The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity. Nat Neurosci. 2015;18(8):1123–32.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Taube JS. Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J Neurosci. 1995;15(1 Pt 1):70–86.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Taube JS, Muller RU, Ranck JB Jr. Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci. 1990;10(2):436–47.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Winter SS, Clark BJ, Taube JS. Spatial navigation. Disruption of the head direction cell network impairs the parahippocampal grid cell signal. Science. 2015;347(6224):870–4.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Jung MW, McNaughton BL. Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus. 1993;3(2):165–82.PubMedCrossRefGoogle Scholar
  86. 86.
    McNaughton BL, Barnes CA, O’Keefe J. The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp Brain Res. 1983;52(1):41–9.PubMedCrossRefGoogle Scholar
  87. 87.
    O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34(1):171–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Sharp PE, Green C. Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat. J Neurosci. 1994;14(4):2339–56.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993;3(3):317–30.PubMedCrossRefGoogle Scholar
  90. 90.
    Skaggs WE, McNaughton BL. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science. 1996;271(5257):1870–3.PubMedCrossRefGoogle Scholar
  91. 91.
    Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsaki G. Organization of cell assemblies in the hippocampus. Nature. 2003;424(6948):552–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Mehta MR, Lee AK, Wilson MA. Role of experience and oscillations in transforming a rate code into a temporal code. Nature. 2002;417(6890):741–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Harvey CD, Collman F, Dombeck DA, Tank DW. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature. 2009;461(7266):941–6.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Burgess N, O’Keefe J. Models of place and grid cell firing and theta rhythmicity. Curr Opin Neurobiol. 2011;21(5):734–44.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Maurer AP, McNaughton BL. Network and intrinsic cellular mechanisms underlying theta phase precession of hippocampal neurons. Trends Neurosci. 2007;30(7):325–33.PubMedCrossRefGoogle Scholar
  96. 96.
    Kim SM, Ganguli S, Frank LM. Spatial information outflow from the hippocampal circuit: distributed spatial coding and phase precession in the subiculum. J Neurosci. 2012;32(34):11539–58.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hafting T, Fyhn M, Bonnevie T, Moser MB, Moser EI. Hippocampus-independent phase precession in entorhinal grid cells. Nature. 2008;453(7199):1248–52.PubMedCrossRefGoogle Scholar
  98. 98.
    Jeewajee A, Barry C, Douchamps V, Manson D, Lever C, Burgess N. Theta phase precession of grid and place cell firing in open environments. Philos Trans R Soc Lond Ser B Biol Sci. 2013;369(1635):20120532.CrossRefGoogle Scholar
  99. 99.
    Jones MW, Wilson MA. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol. 2005;3(12):e402.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Jones MW, Wilson MA. Phase precession of medial prefrontal cortical activity relative to the hippocampal theta rhythm. Hippocampus. 2005;15(7):867–73.PubMedCrossRefGoogle Scholar
  101. 101.
    van der Meer MA, Redish AD. Theta phase precession in rat ventral striatum links place and reward information. J Neurosci. 2011;31(8):2843–54.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Chrobak JJ, Buzsaki G. Gamma oscillations in the entorhinal cortex of the freely behaving rat. J Neurosci. 1998;18(1):388–98.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Dickson CT, Biella G, de Curtis M. Evidence for spatial modules mediated by temporal synchronization of carbachol-induced gamma rhythm in medial entorhinal cortex. J Neurosci. 2000;20(20):7846–54.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Dickson CT, Biella G, de Curtis M. Slow periodic events and their transition to gamma oscillations in the entorhinal cortex of the isolated Guinea pig brain. J Neurophysiol. 2003;90(1):39–46.PubMedCrossRefGoogle Scholar
  105. 105.
    Mizuseki K, Sirota A, Pastalkova E, Buzsaki G. Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron. 2009;64(2):267–80.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Buzsaki G, Eidelberg E. Phase relations of hippocampal projection cells and interneurons to theta activity in the anesthetized rat. Brain Res. 1983;266(2):334–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Sinclair BR, Seto MG, Bland BH. Theta-cells in CA1 and dentate layers of hippocampal formation: relations to slow-wave activity and motor behavior in the freely moving rabbit. J Neurophysiol. 1982;48(5):1214–25.PubMedCrossRefGoogle Scholar
  108. 108.
    Lasztoczi B, Tukker JJ, Somogyi P, Klausberger T. Terminal field and firing selectivity of cholecystokinin-expressing interneurons in the hippocampal CA3 area. J Neurosci. 2011;31(49):18073–93.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Montgomery SM, Betancur MI, Buzsaki G. Behavior-dependent coordination of multiple theta dipoles in the hippocampus. J Neurosci. 2009;29(5):1381–94.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Fox SE, Ranck JB Jr. Electrophysiological characteristics of hippocampal complex-spike cells and theta cells. Exp Brain Res. 1981;41(3-4):399–410.PubMedCrossRefGoogle Scholar
  111. 111.
    Glasgow SD, Chapman CA. Local generation of theta-frequency EEG activity in the parasubiculum. J Neurophysiol. 2007;97(6):3868–79.PubMedCrossRefGoogle Scholar
  112. 112.
    Dickson CT, Trepel C, Bland BH. Extrinsic modulation of theta field activity in the entorhinal cortex of the anesthetized rat. Hippocampus. 1994;4(1):37–51.PubMedCrossRefGoogle Scholar
  113. 113.
    Quilichini P, Sirota A, Buzsaki G. Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat. J Neurosci. 2010;30(33):11128–42.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Quirk GJ, Muller RU, Kubie JL, Ranck JB Jr. The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J Neurosci. 1992;12(5):1945–63.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kocsis B, Bragin A, Buzsaki G. Interdependence of multiple theta generators in the hippocampus: a partial coherence analysis. J Neurosci. 1999;19(14):6200–12.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Colom LV. Septal networks: relevance to theta rhythm, epilepsy and Alzheimer’s disease. J Neurochem. 2006;96(3):609–23.PubMedCrossRefGoogle Scholar
  117. 117.
    Fuhrmann F, Justus D, Sosulina L, Kaneko H, Beutel T, Friedrichs D, et al. Locomotion, theta oscillations, and the speed-correlated firing of hippocampal neurons are controlled by a medial septal glutamatergic circuit. Neuron. 2015;86(5):1253–64.PubMedCrossRefGoogle Scholar
  118. 118.
    Huh CY, Goutagny R, Williams S. Glutamatergic neurons of the mouse medial septum and diagonal band of Broca synaptically drive hippocampal pyramidal cells: relevance for hippocampal theta rhythm. J Neurosci. 2010;30(47):15951–61.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Sotty F, Danik M, Manseau F, Laplante F, Quirion R, Williams S. Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity. J Physiol. 2003;551(Pt 3):927–43.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    McNaughton N, Ruan M, Woodnorth MA. Restoring theta-like rhythmicity in rats restores initial learning in the Morris water maze. Hippocampus. 2006;16(12):1102–10.PubMedCrossRefGoogle Scholar
  121. 121.
    Winson J. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science. 1978;201(4351):160–3.PubMedCrossRefGoogle Scholar
  122. 122.
    Borhegyi Z, Varga V, Szilagyi N, Fabo D, Freund TF. Phase segregation of medial septal GABAergic neurons during hippocampal theta activity. J Neurosci. 2004;24(39):8470–9.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    King C, Recce M, O’Keefe J. The rhythmicity of cells of the medial septum/diagonal band of Broca in the awake freely moving rat: relationships with behaviour and hippocampal theta. Eur J Neurosci. 1998;10(2):464–77.PubMedCrossRefGoogle Scholar
  124. 124.
    Simon AP, Poindessous-Jazat F, Dutar P, Epelbaum J, Bassant MH. Firing properties of anatomically identified neurons in the medial septum of anesthetized and unanesthetized restrained rats. J Neurosci. 2006;26(35):9038–46.PubMedCrossRefGoogle Scholar
  125. 125.
    Stumpf C, Petsche H, Gogolak G. The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus. II. The differential influence of drugs upon both the septal cell firing pattern and the hippocampus theta activity. Electroencephalogr Clin Neurophysiol. 1962;14:212–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Brazhnik ES, Vinogradova OS. Control of the neuronal rhythmic bursts in the septal pacemaker of theta-rhythm: effects of anaesthetic and anticholinergic drugs. Brain Res. 1986;380(1):94–106.PubMedCrossRefGoogle Scholar
  127. 127.
    Serafin M, Williams S, Khateb A, Fort P, Muhlethaler M. Rhythmic firing of medial septum non-cholinergic neurons. Neuroscience. 1996;75(3):671–5.PubMedCrossRefGoogle Scholar
  128. 128.
    Varga V, Hangya B, Kranitz K, Ludanyi A, Zemankovics R, Katona I, et al. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum. J Physiol. 2008;586(16):3893–915.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Freund TF, Antal M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 1988;336(6195):170–3.PubMedCrossRefGoogle Scholar
  130. 130.
    Lee MG, Chrobak JJ, Sik A, Wiley RG, Buzsaki G. Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience. 1994;62(4):1033–47.PubMedCrossRefGoogle Scholar
  131. 131.
    Stewart M, Fox SE. Do septal neurons pace the hippocampal theta rhythm? Trends Neurosci. 1990;13(5):163–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Bassant MH, Apartis E, Jazat-Poindessous FR, Wiley RG, Lamour YA. Selective immunolesion of the basal forebrain cholinergic neurons: effects on hippocampal activity during sleep and wakefulness in the rat. Neurodegeneration. 1995;4(1):61–70.PubMedCrossRefGoogle Scholar
  133. 133.
    Yoder RM, Pang KC. Involvement of GABAergic and cholinergic medial septal neurons in hippocampal theta rhythm. Hippocampus. 2005;15(3):381–92.PubMedCrossRefGoogle Scholar
  134. 134.
    Zhang H, Lin SC, Nicolelis MA. Spatiotemporal coupling between hippocampal acetylcholine release and theta oscillations in vivo. J Neurosci. 2010;30(40):13431–40.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Bland BH, Whishaw IQ. Generators and topography of hippocampal theta (RSA) in the anaesthetized and freely moving rat. Brain Res. 1976;118(2):259–80.PubMedCrossRefGoogle Scholar
  136. 136.
    Hinman JR, Penley SC, Long LL, Escabi MA, Chrobak JJ. Septotemporal variation in dynamics of theta: speed and habituation. J Neurophysiol. 2011;105(6):2675–86.PubMedCrossRefGoogle Scholar
  137. 137.
    Lubenov EV, Siapas AG. Hippocampal theta oscillations are travelling waves. Nature. 2009;459(7246):534–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Patel J, Fujisawa S, Berenyi A, Royer S, Buzsaki G. Traveling theta waves along the entire septotemporal axis of the hippocampus. Neuron. 2012;75(3):410–7.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Isomura Y, Sirota A, Ozen S, Montgomery S, Mizuseki K, Henze DA, et al. Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron. 2006;52(5):871–82.PubMedCrossRefGoogle Scholar
  140. 140.
    Mizuseki K, Diba K, Pastalkova E, Buzsaki G. Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nat Neurosci. 2011;14(9):1174–81.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Kirk IJ, McNaughton N. Mapping the differential effects of procaine on frequency and amplitude of reticularly elicited hippocampal rhythmical slow activity. Hippocampus. 1993;3(4):517–25.PubMedCrossRefGoogle Scholar
  142. 142.
    Lawson VH, Bland BH. The role of the septohippocampal pathway in the regulation of hippocampal field activity and behavior: analysis by the intraseptal microinfusion of carbachol, atropine, and procaine. Exp Neurol. 1993;120(1):132–44.PubMedCrossRefGoogle Scholar
  143. 143.
    Mizumori SJ, McNaughton BL, Barnes CA, Fox KB. Preserved spatial coding in hippocampal CA1 pyramidal cells during reversible suppression of CA3c output: evidence for pattern completion in hippocampus. J Neurosci. 1989;9(11):3915–28.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Goutagny R, Jackson J, Williams S. Self-generated theta oscillations in the hippocampus. Nat Neurosci. 2009;12(12):1491–3.PubMedCrossRefGoogle Scholar
  145. 145.
    Cappaert NL, Wadman WJ, Witter MP. Spatiotemporal analyses of interactions between entorhinal and CA1 projections to the subiculum in rat brain slices. Hippocampus. 2007;17(10):909–21.PubMedCrossRefGoogle Scholar
  146. 146.
    Fellous JM, Sejnowski TJ. Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5-2 Hz), theta (5-12 Hz), and gamma (35-70 Hz) bands. Hippocampus. 2000;10(2):187–97.PubMedCrossRefGoogle Scholar
  147. 147.
    Gillies MJ, Traub RD, LeBeau FE, Davies CH, Gloveli T, Buhl EH, et al. A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J Physiol. 2002;543(Pt 3):779–93.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Gloveli T, Dugladze T, Rotstein HG, Traub RD, Monyer H, Heinemann U, et al. Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. Proc Natl Acad Sci U S A. 2005;102(37):13295–300.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Konopacki J, Bland BH, MacIver MB, Roth SH. Cholinergic theta rhythm in transected hippocampal slices: independent CA1 and dentate generators. Brain Res. 1987;436(2):217–22.PubMedCrossRefGoogle Scholar
  150. 150.
    Rotstein HG, Pervouchine DD, Acker CD, Gillies MJ, White JA, Buhl EH, et al. Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. J Neurophysiol. 2005;94(2):1509–18.PubMedCrossRefGoogle Scholar
  151. 151.
    Traub RD, Miles R, Wong RK. Model of the origin of rhythmic population oscillations in the hippocampal slice. Science. 1989;243(4896):1319–25.PubMedCrossRefGoogle Scholar
  152. 152.
    Amilhon B, Huh CY, Manseau F, Ducharme G, Nichol H, Adamantidis A, et al. Parvalbumin interneurons of hippocampus tune population activity at theta frequency. Neuron. 2015;86(5):1277–89.PubMedCrossRefGoogle Scholar
  153. 153.
    Jackson J, Goutagny R, Williams S. Fast and slow gamma rhythms are intrinsically and independently generated in the subiculum. J Neurosci. 2011;31(34):12104–17.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Hutcheon B, Yarom Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci. 2000;23(5):216–22.PubMedCrossRefGoogle Scholar
  155. 155.
    Leung LS, Yu HW. Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection. J Neurophysiol. 1998;79(3):1592–6.PubMedCrossRefGoogle Scholar
  156. 156.
    Schreiber S, Erchova I, Heinemann U, Herz AV. Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. J Neurophysiol. 2004;92(1):408–15.PubMedCrossRefGoogle Scholar
  157. 157.
    Richardson MJ, Brunel N, Hakim V. From subthreshold to firing-rate resonance. J Neurophysiol. 2003;89(5):2538–54.PubMedCrossRefGoogle Scholar
  158. 158.
    Borel M, Guadagna S, Jang HJ, Kwag J, Paulsen O. Frequency dependence of CA3 spike phase response arising from h-current properties. Front Cell Neurosci. 2013;7:263.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Pike FG, Goddard RS, Suckling JM, Ganter P, Kasthuri N, Paulsen O. Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J Physiol. 2000;529(Pt 1):205–13.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Wang WT, Wan YH, Zhu JL, Lei GS, Wang YY, Zhang P, et al. Theta-frequency membrane resonance and its ionic mechanisms in rat subicular pyramidal neurons. Neuroscience. 2006;140(1):45–55.PubMedCrossRefGoogle Scholar
  161. 161.
    Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science. 2008;321(5885):53–7.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Bezaire MJ, Soltesz I. Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus. 2013;23(9):751–85.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Jinno S, Klausberger T, Marton LF, Dalezios Y, Roberts JD, Fuentealba P, et al. Neuronal diversity in GABAergic long-range projections from the hippocampus. J Neurosci. 2007;27(33):8790–804.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Sik A, Penttonen M, Ylinen A, Buzsaki G. Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J Neurosci. 1995;15(10):6651–65.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Lawrence JJ, Grinspan ZM, Statland JM, McBain CJ. Muscarinic receptor activation tunes mouse stratum oriens interneurones to amplify spike reliability. J Physiol. 2006;571(Pt 3):555–62.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Kispersky TJ, Fernandez FR, Economo MN, White JA. Spike resonance properties in hippocampal O-LM cells are dependent on refractory dynamics. J Neurosci. 2012;32(11):3637–51.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature. 1995;378(6552):75–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Stark E, Eichler R, Roux L, Fujisawa S, Rotstein HG, Buzsaki G. Inhibition-induced theta resonance in cortical circuits. Neuron. 2013;80(5):1263–76.PubMedCrossRefGoogle Scholar
  169. 169.
    Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee JC, et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat Neurosci. 2012;15(5):769–75.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Lapray D, Lasztoczi B, Lagler M, Viney TJ, Katona L, Valenti O, et al. Behavior-dependent specialization of identified hippocampal interneurons. Nat Neurosci. 2012;15(9):1265–71.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Varga C, Golshani P, Soltesz I. Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. Proc Natl Acad Sci U S A. 2012;109(40):E2726–34.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009;459(7247):663–7.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459(7247):698–702.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Losonczy A, Zemelman BV, Vaziri A, Magee JC. Network mechanisms of theta related neuronal activity in hippocampal CA1 pyramidal neurons. Nat Neurosci. 2010;13(8):967–72.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Wulff P, Ponomarenko AA, Bartos M, Korotkova TM, Fuchs EC, Bahner F, et al. Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc Natl Acad Sci U S A. 2009;106(9):3561–6.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Ylinen A, Soltesz I, Bragin A, Penttonen M, Sik A, Buzsaki G. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus. 1995;5(1):78–90.PubMedCrossRefGoogle Scholar
  177. 177.
    Leao RN, Mikulovic S, Leao KE, Munguba H, Gezelius H, Enjin A, et al. OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nat Neurosci. 2012;15(11):1524–30.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Lovett-Barron M, Kaifosh P, Kheirbek MA, Danielson N, Zaremba JD, Reardon TR, et al. Dendritic inhibition in the hippocampus supports fear learning. Science. 2014;343(6173):857–63.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Toth K, Freund TF, Miles R. Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. J Physiol. 1997;500(Pt 2):463–74.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11(7):267–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Charpak S, Pare D, Llinas R. The entorhinal cortex entrains fast CA1 hippocampal oscillations in the anaesthetized guinea-pig: role of the monosynaptic component of the perforant path. Eur J Neurosci. 1995;7(7):1548–57.PubMedCrossRefGoogle Scholar
  182. 182.
    Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature. 2009;462(7271):353–7.PubMedCrossRefGoogle Scholar
  183. 183.
    Csicsvari J, Jamieson B, Wise KD, Buzsaki G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron. 2003;37(2):311–22.PubMedCrossRefGoogle Scholar
  184. 184.
    Montgomery SM, Buzsaki G. Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc Natl Acad Sci U S A. 2007;104(36):14495–500.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Tort AB, Rotstein HG, Dugladze T, Gloveli T, Kopell NJ. On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proc Natl Acad Sci U S A. 2007;104(33):13490–5.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Dragoi G, Buzsaki G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron. 2006;50(1):145–57.PubMedCrossRefGoogle Scholar
  187. 187.
    Foster DJ, Wilson MA. Hippocampal theta sequences. Hippocampus. 2007;17(11):1093–9.PubMedCrossRefGoogle Scholar
  188. 188.
    Skaggs WE, McNaughton BL, Wilson MA, Barnes CA. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus. 1996;6(2):149–72.PubMedCrossRefGoogle Scholar
  189. 189.
    Colgin LL. Mechanisms and functions of theta rhythms. Ann Rev Neurosci. 2013;36:295–312.PubMedCrossRefGoogle Scholar
  190. 190.
    Lisman J, Redish AD. Prediction, sequences and the hippocampus. Philos Trans R Soc Lond Ser B Biol Sci. 2009;364(1521):1193–201.CrossRefGoogle Scholar
  191. 191.
    Gupta AS, van der Meer MA, Touretzky DS, Redish AD. Segmentation of spatial experience by hippocampal theta sequences. Nat Neurosci. 2012;15(7):1032–9.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Johnson A, Redish AD. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J Neurosci. 2007;27(45):12176–89.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Wikenheiser AM, Redish AD. Hippocampal theta sequences reflect current goals. Nat Neurosci. 2015;18(2):289–94.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005;9(10):474–80.PubMedCrossRefGoogle Scholar
  195. 195.
    Adhikari A, Topiwala MA, Gordon JA. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron. 2010;65(2):257–69.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Bienvenu TC, Busti D, Magill PJ, Ferraguti F, Capogna M. Cell-type-specific recruitment of amygdala interneurons to hippocampal theta rhythm and noxious stimuli in vivo. Neuron. 2012;74(6):1059–74.PubMedCrossRefGoogle Scholar
  197. 197.
    Gourevitch B, Kay LM, Martin C. Directional coupling from the olfactory bulb to the hippocampus during a go/no-go odor discrimination task. J Neurophysiol. 2010;103(5):2633–41.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Jacinto LR, Reis JS, Dias NS, Cerqueira JJ, Correia JH, Sousa N. Stress affects theta activity in limbic networks and impairs novelty-induced exploration and familiarization. Front Behav Neurosci. 2013;7:127.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Schmidt B, Hinman JR, Jacobson TK, Szkudlarek E, Argraves M, Escabi MA, et al. Dissociation between dorsal and ventral hippocampal theta oscillations during decision-making. J Neurosci. 2013;33(14):6212–24.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Colgin LL. Oscillations and hippocampal-prefrontal synchrony. Curr Opin Neurobiol. 2011;21(3):467–74.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Gordon JA. Oscillations and hippocampal-prefrontal synchrony. Curr Opin Neurobiol. 2011;21(3):486–91.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Euston DR, Gruber AJ, McNaughton BL. The role of medial prefrontal cortex in memory and decision making. Neuron. 2012;76(6):1057–70.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Ann Rev Neurosci. 2001;24:167–202.PubMedCrossRefGoogle Scholar
  204. 204.
    Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct. 2007;212(2):149–79.PubMedCrossRefGoogle Scholar
  205. 205.
    Jay TM, Witter MP. Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol. 1991;313(4):574–86.PubMedCrossRefGoogle Scholar
  206. 206.
    Degenetais E, Thierry AM, Glowinski J, Gioanni Y. Synaptic influence of hippocampus on pyramidal cells of the rat prefrontal cortex: an in vivo intracellular recording study. Cereb Cortex. 2003;13(7):782–92.PubMedCrossRefGoogle Scholar
  207. 207.
    Jay TM, Thierry AM, Wiklund L, Glowinski J. Excitatory amino acid pathway from the hippocampus to the prefrontal cortex. Contribution of AMPA receptors in hippocampo-prefrontal cortex tTransmission. Eur J Neurosci. 1992;4(12):1285–95.PubMedCrossRefGoogle Scholar
  208. 208.
    Laroche S, Jay TM, Thierry AM. Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/subicular region. Neurosci Lett. 1990;114(2):184–90.PubMedCrossRefGoogle Scholar
  209. 209.
    Parent MA, Wang L, Su J, Netoff T, Yuan LL. Identification of the hippocampal input to medial prefrontal cortex in vitro. Cereb Cortex. 2010;20(2):393–403.PubMedCrossRefGoogle Scholar
  210. 210.
    Hyman JM, Zilli EA, Paley AM, Hasselmo ME. Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus. 2005;15(6):739–49.PubMedCrossRefGoogle Scholar
  211. 211.
    Siapas AG, Lubenov EV, Wilson MA. Prefrontal phase locking to hippocampal theta oscillations. Neuron. 2005;46(1):141–51.PubMedCrossRefGoogle Scholar
  212. 212.
    Sirota A, Montgomery S, Fujisawa S, Isomura Y, Zugaro M, Buzsaki G. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron. 2008;60(4):683–97.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Young CK, McNaughton N. Coupling of theta oscillations between anterior and posterior midline cortex and with the hippocampus in freely behaving rats. Cereb Cortex. 2009;19(1):24–40.PubMedCrossRefGoogle Scholar
  214. 214.
    Hartwich K, Pollak T, Klausberger T. Distinct firing patterns of identified basket and dendrite-targeting interneurons in the prefrontal cortex during hippocampal theta and local spindle oscillations. J Neurosci. 2009;29(30):9563–74.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    O’Neill PK, Gordon JA, Sigurdsson T. Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion. J Neurosci. 2013;33(35):14211–24.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA. Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature. 2010;464(7289):763–7.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Hyman JM, Zilli EA, Paley AM, Hasselmo ME. Working memory performance correlates with prefrontal-hippocampal theta interactions but not with prefrontal neuron firing rates. Front Integr Neurosci. 2010;4:2.PubMedPubMedCentralGoogle Scholar
  218. 218.
    Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, et al. Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron. 2010;66(6):921–36.PubMedCrossRefGoogle Scholar
  219. 219.
    Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ. Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron. 2007;53(6):871–80.PubMedCrossRefGoogle Scholar
  220. 220.
    Shah AA, Sjovold T, Treit D. Inactivation of the medial prefrontal cortex with the GABAA receptor agonist muscimol increases open-arm activity in the elevated plus-maze and attenuates shock-probe burying in rats. Brain Res. 2004;1028(1):112–5.PubMedCrossRefGoogle Scholar
  221. 221.
    Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, et al. Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev. 2004;28(3):273–83.PubMedCrossRefGoogle Scholar
  222. 222.
    Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, Moser MB. Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci U S A. 2002;99(16):10825–30.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Courtin J, Chaudun F, Rozeske RR, Karalis N, Gonzalez-Campo C, Wurtz H, et al. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature. 2014;505(7481):92–6.PubMedCrossRefGoogle Scholar
  224. 224.
    Engin E, Treit D. The role of hippocampus in anxiety: intracerebral infusion studies. Behav Pharmacol. 2007;18(5-6):365–74.PubMedCrossRefGoogle Scholar
  225. 225.
    Ciocchi S, Passecker J, Malagon-Vina H, Mikus N, Klausberger T. Brain computation. Selective information routing by ventral hippocampal CA1 projection neurons. Science. 2015;348(6234):560–3.PubMedCrossRefGoogle Scholar
  226. 226.
    Lesting J, Daldrup T, Narayanan V, Himpe C, Seidenbecher T, Pape HC. Directional theta coherence in prefrontal cortical to amygdalo-hippocampal pathways signals fear extinction. PLoS One. 2013;8(10):e77707.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Lesting J, Narayanan RT, Kluge C, Sangha S, Seidenbecher T, Pape HC. Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction. PLoS One. 2011;6(6):e21714.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Popa D, Duvarci S, Popescu AT, Lena C, Pare D. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc Natl Acad Sci U S A. 2010;107(14):6516–9.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Seidenbecher T, Laxmi TR, Stork O, Pape HC. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science. 2003;301(5634):846–50.PubMedCrossRefGoogle Scholar
  230. 230.
    Voorn P, Vanderschuren LJ, Groenewegen HJ, Robbins TW, Pennartz CM. Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci. 2004;27(8):468–74.PubMedCrossRefGoogle Scholar
  231. 231.
    Jackson J, Young CK, Hu B, Bland BH. High frequency stimulation of the posterior hypothalamic nucleus restores movement and reinstates hippocampal-striatal theta coherence following haloperidol-induced catalepsy. Exp Neurol. 2008;213(1):210–9.PubMedCrossRefGoogle Scholar
  232. 232.
    Albertin SV, Wiener SI. Neuronal activity in the nucleus accumbens and hippocampus in rats during formation of seeking behavior in a radial maze. Bull Exp Biol Med. 2015;158(4):405–9.PubMedCrossRefGoogle Scholar
  233. 233.
    Berke JD, Okatan M, Skurski J, Eichenbaum HB. Oscillatory entrainment of striatal neurons in freely moving rats. Neuron. 2004;43(6):883–96.PubMedCrossRefGoogle Scholar
  234. 234.
    Lansink CS, Goltstein PM, Lankelma JV, McNaughton BL, Pennartz CM. Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biol. 2009;7(8):e1000173.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    DeCoteau WE, Thorn C, Gibson DJ, Courtemanche R, Mitra P, Kubota Y, et al. Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task. Proc Natl Acad Sci U S A. 2007;104(13):5644–9.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Tort AB, Kramer MA, Thorn C, Gibson DJ, Kubota Y, Graybiel AM, et al. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci U S A. 2008;105(51):20517–22.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    van der Meer MA, Redish AD. Covert expectation-of-reward in rat ventral striatum at decision points. Front Integr Neurosci. 2009;3:1.PubMedPubMedCentralGoogle Scholar
  238. 238.
    Pennartz CM, Ito R, Verschure PF, Battaglia FP, Robbins TW. The hippocampal-striatal axis in learning, prediction and goal-directed behavior. Trends Neurosci. 2011;34(10):548–59.PubMedCrossRefGoogle Scholar
  239. 239.
    Goutagny R, Loureiro M, Jackson J, Chaumont J, Williams S, Isope P, et al. Interactions between the lateral habenula and the hippocampus: implication for spatial memory processes. Neuropsychopharmacology. 2013;38(12):2418–26.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Fujisawa S, Buzsaki G. A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron. 2011;72(1):153–65.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Hoffmann LC, Berry SD. Cerebellar theta oscillations are synchronized during hippocampal theta-contingent trace conditioning. Proc Natl Acad Sci U S A. 2009;106(50):21371–6.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Remondes M, Wilson MA. Cingulate-hippocampus coherence and trajectory coding in a sequential choice task. Neuron. 2013;80(5):1277–89.PubMedCrossRefGoogle Scholar
  243. 243.
    Likhtik E, Stujenske JM, Topiwala MA, Harris AZ, Gordon JA. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat Neurosci. 2014;17(1):106–13.PubMedCrossRefGoogle Scholar
  244. 244.
    Tendler A, Wagner S. Different types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory. elife. 2015;4:e03614.PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Département de Neuroscience, CHU Sainte-Justine Research CenterUniversité de MontréalMontrealCanada
  2. 2.CHU Sainte-Justine Research CenterMontrealCanada
  3. 3.Department of PhysiologyUniversity of AlbertaEdmontonCanada
  4. 4.CNRS UMR 7364, Université de StrasbourgStrasbourgFrance
  5. 5.Douglas Research CenterMcGill UniversityMontrealCanada

Personalised recommendations