Exploring Oscillations in Expert Sensorimotor Anticipation: The Tennis Return of Serve



In order to react quickly and precisely, multiple brain areas must interact using optimized mechanisms. Using a particular sports example, the return of serve in tennis—incarnated in the “Milos vs. Roger” duel—this chapter explores the modes of interaction between the involved brain structures, focusing on oscillations and their coherence. Based on multiple lines of evidence, during a reaction-time situation, various brain areas modify their local networks, and link distant networks together through coherent slow-wave activity, permitting to optimize communications. We review the oscillatory activity present in sensorimotor cortices, as well as in the basal ganglia and cerebellum, and posit how the oscillatory processes might interact in the whole brain during the delay when a service returner waits to initiate the movement. As the return of serve requires anticipatory skills, we attempt to link the anticipatory behavior to oscillatory activity, likely connecting the frontal and parietal lobes. Based on animal and human evidence, we admit to making educated guesses as to the brain wave activity during a tennis match: however, the exercise illustrates well the need, and the excitement, in developing more knowledge on the effects of movement expertise in the brain.


Synchrony Reaction time Timing Oscillation Sensorimotor organization Expertise 



We would like to thank Ariana Frederick for initial help with figure design. A special thanks to Mark Winter for providing original artwork as a courtesy, after we saw his work at A special thanks as well to Dr. Thanh Dang-Vu for his enthusiasm, patience, and for providing the opportunity to write this review. RC was a Tennis-Canada certified coach in the Québec City area a long time ago, and this chapter stems from both fundamental and applied deliberations over the years, inspired from stimulating discussions with motor control experts Drs. Michelle Fleury, Normand Teasdale, and Chantal Bard; from neurobiological musings with the co-authors; as well as with Drs. Stéphane Dieudonné and Ann Graybiel, and kinesiology colleagues. RC was also fortunate to get to work with tennis coaches Jacques Bordeleau, “Jack” Hérisset, and Louis Lamontagne along the way, who emphasized the perceptual-motor aspect of tennis. RC thanks his co-authors for their patience and willingness to explore: while this was a fun (but risky!) attempt at integration, any good thought likely stemmed from these discussions, while on the other hand, RC gladly takes the blame for any unfortunate oversimplification. Grants from NSERC, FRQNT, and Concordia University supported time and information gathering for this work to be produced.


  1. 1.
    Makris S. Sport neuroscience revisited (?): a commentary. Front Hum Neurosci. 2014;8:929.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Walsh V. Is sport the brain’s biggest challenge? Curr Biol. 2014;24:R859–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Foster Wallace D. Federer as a religious experience. The New York Times; 2006.Google Scholar
  4. 4.
    Rowland TW. The athlete’s clock: how biology and time affect sports performance. Champaign, IL: Human Kinetics; 2011.CrossRefGoogle Scholar
  5. 5.
    Partnoy F. Wait: the art and science of delay. Philadelphia, PA: Public Affairs Books; 2012.Google Scholar
  6. 6.
    Abernethy B, Russell DG. The relationship between expertise and visual search strategy in a racquet sport. Hum Mov Sci. 1987;6:283–319.CrossRefGoogle Scholar
  7. 7.
    Abernethy B. Visual search strategies and decision-making in sport. Int J Sport Psychol. 1991;22:189–210.Google Scholar
  8. 8.
    Abernethy B, Gill DP, Parks SL, Packer ST. Expertise and the perception of kinematic and situational probability information. Perception. 2001;30:233–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Farrow D, Abernethy B. Do expertise and the degree of perception-action coupling affect natural anticipatory performance? Perception. 2003;32:1127–39.PubMedCrossRefGoogle Scholar
  10. 10.
    Farrow D, Abernethy B, Jackson RC. Probing expert anticipation with the temporal occlusion paradigm: experimental investigations of some methodological issues. Mot Control. 2005;9:332–51.Google Scholar
  11. 11.
    Ripoll H. Le mental des champions. Paris: Payot-Rivages; 2008.. [in French]Google Scholar
  12. 12.
    Connors J, LaMarche RJ. How to play tougher tennis. New York: Golf Digest/Tennis Inc.; 1986.Google Scholar
  13. 13.
    Burwash P, Tullius J. Total tennis. New York: Macmillan; 1989.Google Scholar
  14. 14.
    Triolet C. The different natures of tennis anticipation: From quantification to perceptive learning. Ph.D. thesis. Paris: Université Paris Sud–Paris XI; 2012. p. 159.Google Scholar
  15. 15.
    Triolet C, Benguigui N, Le Runigo C, Williams AM. Quantifying the nature of anticipation in professional tennis. J Sports Sci. 2013;31:820–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Hodgkinson M. Fedegraphica. London: Aurum Press; 2016.Google Scholar
  17. 17.
    Ashe A, McNab A. Arthur Ashe on tennis. New York: Avon Books; 1995.Google Scholar
  18. 18.
    Collins B, Hollander Z. Bud Collins’ tennis encyclopedia. Detroit, MI: Visible Ink Press; 1997.Google Scholar
  19. 19.
    Abernethy B, Hanrahan SJ, Kippers V, Mackinnon LT, Pandy MG. The biophysical foundations of human movement. Champaign, IL: Human Kinetics; 2005.Google Scholar
  20. 20.
    Denis D, Rowe R, Williams AM, Milne E. The role of cortical sensorimotor oscillations in action anticipation. NeuroImage. 2017;146:1102–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Cisek P, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Ann Rev Neurosci. 2010;33:269–98.PubMedCrossRefGoogle Scholar
  22. 22.
    Buzsaki G. Rhythms of the brain. New York: Oxford University Press; 2006.CrossRefGoogle Scholar
  23. 23.
    Moser E, Corbetta M, Desimone R, Frégnac Y, Fries P, Graybiel AM, et al. Coordination in brain systems. In: von der Marlsburg C, et al., editors. Dynamic coordination in the brain: from neurons to mind. Cambridge, MA: MIT Press; 2010. p. 193–214.CrossRefGoogle Scholar
  24. 24.
    Buzsaki G, Watson BO. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci. 2012;14:345–67.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Laurent G. Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci. 1996;19:489–96.PubMedCrossRefGoogle Scholar
  27. 27.
    Roelfsema PR, Engel AK, König P, Singer W. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature. 1997;385:157–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Schnitzler A, Gross J. Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci. 2005;6:285–96.CrossRefPubMedGoogle Scholar
  29. 29.
    Akam T, Kullmann DM. Oscillations and filtering networks support flexible routing of information. Neuron. 2010;67:308–20.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Buzsaki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron. 2013;80:751–64.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bressler SL, Richter CG. Interareal oscillatory synchronization in top-down neocortical processing. Curr Opin Neurobiol. 2015;31:62–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Morillon B, Hackett TA, Kajikawa Y, Schroeder CE. Predictive motor control of sensory dynamics in auditory active sensing. Curr Opin Neurobiol. 2015;31:230–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Keele SW, Cohen A, Ivry RB, Jeannerod M. Motor programs: concepts and issues. In: Attention and performance XIII motor representation and control. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.; 1990. p. 77–110.Google Scholar
  34. 34.
    Paillard J. The cognitive penetrability of sensorimotor mechanisms: a key problem in sport research. Int J Sport Psychol. 1991;22:244–50.Google Scholar
  35. 35.
    Yarrow K, Brown P, Krakauer JW. Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nat Rev Neurosci. 2009;10:585–96.PubMedCrossRefGoogle Scholar
  36. 36.
    Cisek P, Pastor-Bernier A. On the challenges and mechanisms of embodied decisions. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1655). pii: 20130479.CrossRefGoogle Scholar
  37. 37.
    Decety J, Sjîholm H, Ryding E, Stenberg G, Ingvar DH. The cerebellum participates in mental activity: tomographic measurements of regional cerebral blood flow. Brain Res. 1990;535:313–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Ryding E, Decety J, Sjîholm H, Stenberg G, Ingvar DH. Motor imagery activates the cerebellum regionally. A SPECT rCBF study with 99m Tc-HMPAO. Brain Res Cogn Brain Res. 1993;1:94–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Cacioppo S, Fontang F, Patel N, Decety J, Monteleone G, Cacioppo JT. Intention understanding over T: a neuroimaging study on shared representations and tennis return predictions. Front Hum Neurosci. 2014;8:781.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zeki S, Shipp S. The functional logic of cortical connections. Nature. 1988;335:311–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Zeki S. A vision of the brain. Oxford: Blackwell Scientific; 1993.Google Scholar
  42. 42.
    Goldberg ME, Wurtz RH. Visual processing and action. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. New York: McGraw-Hill; 2013. p. 638–53.Google Scholar
  43. 43.
    Series P, Seitz AR. Learning what to expect (in visual perception). Front Hum Neurosci. 2013;7:668.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Newsome WT. The King Solomon Lectures in Neuroethology. Deciding about motion: linking perception to action. J Comp Physiol A. 1997;181(1):5–12.PubMedCrossRefGoogle Scholar
  45. 45.
    Rizzolatti G, Fogassi L, Gallese V. Parietal cortex: from sight to action. Curr Opin Neurobiol. 1997;7:562–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Rizzolatti G, Strick PL. Cognitive functions of the premotor systems. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. New York: McGraw-Hill; 2013. p. 412–25.Google Scholar
  47. 47.
    Mountcastle VB. The parietal system and some higher brain functions. Cereb Cortex. 1995;5:377–90.PubMedCrossRefGoogle Scholar
  48. 48.
    Graziano MSA, Cooke DF, Taylor CSR. Coding the location of the arm by sight. Science. 2000;290:1782–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Rizzolatti G, Kalaska JF. Voluntary movement: the parietal and premotor cortex. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. New York: McGraw-Hill; 2013. p. 864–93.Google Scholar
  50. 50.
    Bizzi E, Cheung VCK, d’Avella A, Saltiel P, Tresch M. Combining modules for movement. Brain Res Brain Res Rev. 2008;57:125–33.CrossRefGoogle Scholar
  51. 51.
    Reid M, Crespo M, Farrow D. Learning the game. In: Elliott B, Reid M, Crespo M, editors. Tennis science. Chicago, IL: The University of Chicago Press; 2015. p. 12–31.Google Scholar
  52. 52.
    Saviano N, McNab A. How to improve your anticipation. Tennis. 1996;32(1):38–43.Google Scholar
  53. 53.
    Agassi A, Weathers E. You can learn the secrets of my return. Tennis. 1997;33:38–43.Google Scholar
  54. 54.
    O’Connell T. Visual information processing: tennis volleying strategy. M.Sc. thesis, Université Laval; 1997. p. 33.Google Scholar
  55. 55.
    Cayer L. Retour de service. Tennis-Mag. 1996;35:8–9.Google Scholar
  56. 56.
    Goulet C, Fleury M, Bard C, Yerlès M, Michaud D, Lemire L. Analyse des indices visuels preleves en reception de service au tennis. Can J Sport Sci. 1988;13:79–87.. [in French]PubMedGoogle Scholar
  57. 57.
    Goulet C, Bard C, Fleury M. Expertise differences in preparing to return a tennis serve: a visual information processing approach. J Sport Exercise Psychol. 1989;11(4):382–98.CrossRefGoogle Scholar
  58. 58.
    Abernethy B, Zawi K, Jackson RC. Expertise and attunement to kinematic constraints. Perception. 2008;37:931–48.PubMedCrossRefGoogle Scholar
  59. 59.
    Sekuler R, Sekuler AB, Lau R. Sound alters visual motion perception. Nature. 1997;385:308.PubMedCrossRefGoogle Scholar
  60. 60.
    Paulin MG. The role of the cerebellum in motor control and perception. Brain Behav Evol. 1993;41:39–50.PubMedCrossRefGoogle Scholar
  61. 61.
    Courchesne E, Allen G. Prediction and preparation, fundamental functions of the cerebellum. Learn Mem. 1997;4:1–35.PubMedCrossRefGoogle Scholar
  62. 62.
    Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.PubMedCrossRefGoogle Scholar
  63. 63.
    Llinás RR. I of the vortex. Cambridge, MA: MIT Press; 2001.CrossRefGoogle Scholar
  64. 64.
    Courtemanche R, Frederick A. A spatiotemporal hypothesis on the role of 4- to 25-Hz field potential oscillations in cerebellar cortex. In: Heck D, editor. The neuronal codes of the cerebellum. London: Academic Press; 2015. p. 219–38.Google Scholar
  65. 65.
    Ahissar E, Assa E. Perception as a closed-loop convergence process. eLife. 2016;5:1–26.CrossRefGoogle Scholar
  66. 66.
    Bower JM, Schmahmann JD. Control of sensory data acquisition. In: The cerebellum and cognition–international review of neurobiology, vol. 41. San Diego: Academic Press; 1997. p. 489–513.Google Scholar
  67. 67.
    Livingstone MS, Hubel DH. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science. 1998;240:740–9.CrossRefGoogle Scholar
  68. 68.
    Stein J. Visual motion sensitivity and reading. Neuropsychologia. 2003;41:1785–93.PubMedCrossRefGoogle Scholar
  69. 69.
    Mishkin M, Ungerleider LG, Macko KA. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 1983;6:414–7.CrossRefGoogle Scholar
  70. 70.
    Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends Neurosci. 1992;15:20–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Goodale MA. Visual pathways supprting perception and action in the primate cerebral cortex. Curr Opin Neurobiol. 1993;3:578–85.PubMedCrossRefGoogle Scholar
  72. 72.
    Maunsell JHR. Functional visual streams. Curr Opin Neurobiol. 1993;2:506–10.CrossRefGoogle Scholar
  73. 73.
    Maunsell JHR. The brain’s visual world: representation of visual targets in cerebral cortex. Science. 1995;270:764–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci. 1991;11:2383–402.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Watanabe T, Sasaki Y, Miyauchi S, Putz B, Fujimaki N, Nielsen M, et al. Attention-regulated activity in human primary visual cortex. J Neurophysiol. 1998;79:2218–21.PubMedCrossRefGoogle Scholar
  76. 76.
    Kravitz DJ, Saleem KS, Baker CI, Mishkin M. A new neural framework for visuospatial processing. Nat Rev Neurosci. 2011;12:217–30.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Usrey WM, Reid RC. Synchronous activity in the visual system. Annu Rev Physiol. 1999;61:435–56.PubMedCrossRefGoogle Scholar
  78. 78.
    Briggs F, Usrey WM. Patterned activity within the local cortical architecture. Front Neurosci. 2010;4:18.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Gray CM, Kînig P, Engel AK, Singer W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature. 1989;338:334–7.CrossRefPubMedGoogle Scholar
  80. 80.
    Singer W. Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol. 1993;55:349–74.PubMedCrossRefGoogle Scholar
  81. 81.
    Singer W, Koch C, Davis JL. Putative functions of temporal correlations in neocortical processing. In: Koch C, Davis JL, editors. Large-scale neuronal theories of the brain. Cambridge, MA: MIT Press; 1994. p. 201–37.Google Scholar
  82. 82.
    Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Ann Rev Neurosci. 1995;18:555–86.PubMedCrossRefGoogle Scholar
  83. 83.
    Engel AK, Singer W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci. 2001;5:16–25.PubMedCrossRefGoogle Scholar
  84. 84.
    Treisman A. The binding problem. Curr Opin Neurobiol. 1996;6:171–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Crick F. The astonishing hypothesis. London: Simon & Schuster; 1994.Google Scholar
  86. 86.
    Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci. 2001;2:704–16.PubMedCrossRefGoogle Scholar
  87. 87.
    Arnal LH, Giraud AL. Cortical oscillations and sensory predictions. Trends Cogn Sci. 2012;16:390–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Gardner EP, Johnson KO. Touch. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. Principles of neural science. New York: McGraw-Hill; 2013. p. 498–529.Google Scholar
  89. 89.
    McCloskey DI, Prochazka A. The role of sensory information in the guidance of voluntary movement: reflections on a symposium held at the 22nd annual meeting of the Society for Neuroscience. Somatosens Mot Res. 1994;11:69–76.PubMedCrossRefGoogle Scholar
  90. 90.
    Roy S, Alloway KD. Stimulus-induced increases in the synchronization of local neural networks in the somatosensory cortex: a comparison of stationary and moving stimuli. J Neurophysiol. 1999;81:999–1013.PubMedCrossRefGoogle Scholar
  91. 91.
    Bardouille T, Picton TW, Ross B. Attention modulates beta oscillations during prolonged tactile stimulation. Eur J Neurosci. 2010;31:761–9.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Rossiter HE, Worthen SF, Witton C, Hall SD, Furlong PL. Gamma oscillatory amplitude encodes stimulus intensity in primary somatosensory cortex. Front Hum Neurosci. 2013;7:362.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Schroeder CE, Lakatos P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 2009;32:9–18.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009;459:663–7.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sumiyoshi A, Suzuki H, Ogawa T, Riera JJ, Shimokawa H, Kawashima R. Coupling between gamma oscillation and fMRI signal in the rat somatosensory cortex: its dependence on systemic physiological parameters. NeuroImage. 2012;60:738–46.PubMedCrossRefGoogle Scholar
  96. 96.
    Cisek P, Kalaska JF. Simultaneous encoding of multiple potential reach directions in dorsal premotor cortex. J Neurophysiol. 2002;87:1149–54.PubMedCrossRefGoogle Scholar
  97. 97.
    Ebner TJ, Hendrix CM, Pasalar S. Past, present, and emerging principles in the neural encoding of movement. Adv Exp Med Biol. 2009;629:127–37.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Miller EK. The prefrontal cortex: complex neural properties for complex behavior. Neuron. 1999;22:15–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Buschman TJ, Miller EK. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science. 2007;315:1860–2.PubMedCrossRefGoogle Scholar
  100. 100.
    Dubois B, Pillon B, Sirigu A, Seron X, Jeannerod M. Fonctions intégratrices et cortex préfrontal chez l’Homme. In: Neuropsychologie humaine. Liège, Belgium: Mardaga; 1994. p. 452–69.Google Scholar
  101. 101.
    Wise SP, Evarts EV, Bousfield D. The role of the cerebral cortex in movement. In: The motor system in neurobiology. Amsterdam: Elsevier; 1985. p. 307–14.Google Scholar
  102. 102.
    Fetz EE, Patton HD, Fuchs AF, Hille B, Scher AM, Steiner R. Motor functions of cerebral cortex. In: Textbook of physiology, vol. 1. Philadelphia: W.B. Saunders; 1989. p. 608–31.Google Scholar
  103. 103.
    Kalaska JF, Drew T. Motor cortex and visuomotor behavior. Exerc Sport Sci Rev. 1993;21:397–436.PubMedCrossRefGoogle Scholar
  104. 104.
    Basar E, Basar-Eroglu C, Karakas S, Schurmann M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol. 2001;39:241–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Del Percio C, Babiloni C, Marzano N, Iacoboni M, Infarinato F, Vecchio F, et al. “Neural efficiency” of athletes’ brain for upright standing: a high-resolution EEG study. Brain Res Bull. 2009;79:193–200.PubMedCrossRefGoogle Scholar
  106. 106.
    Kayser SJ, McNair SW, Kayser C. Prestimulus influences on auditory perception from sensory representations and decision processes. Proc Natl Acad Sci U S A. 2016;113:4842–7.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    MacKay WA. Synchronized neuronal oscillations and their role in motor processes. Trends Cogn Sci. 1997;1:176–83.PubMedCrossRefGoogle Scholar
  108. 108.
    Murthy V, Fetz EE. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci U S A. 1992;89:5670–4.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Sanes JN, Donoghue JP. Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc Natl Acad Sci U S A. 1993;90:4470–4.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Murthy V, Fetz EE. Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. J Neurophysiol. 1996;76:3949–67.PubMedCrossRefGoogle Scholar
  111. 111.
    Donoghue JP, Sanes JN, Hatsopoulos NG, Gaál G. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movement. J Neurophysiol. 1998;79:159–73.PubMedCrossRefGoogle Scholar
  112. 112.
    Miller KJ, Hermes D, Honey CJ, Hebb AO, Ramsey NF, Knight RT, et al. Human motor cortical activity is selectively phase-entrained on underlying rhythms. PLoS Comput Biol. 2012;8:e1002655.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Murthy V, Fetz EE. Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. J Neurophysiol. 1996;76:3968–82.PubMedCrossRefGoogle Scholar
  114. 114.
    Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI, et al. Neural population dynamics during reaching. Nature. 2012;487:51–6.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Baker SN, Olivier E, Lemon RN. Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol (London). 1997;501:225–41.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Lemon RN. Mechanisms of cortical control of hand function. Neuroscientist. 1997;3:389–98.CrossRefGoogle Scholar
  117. 117.
    Baker SN, Pinches EM, Lemon RN. Synchronization in monkey motor cortex during a precision grip task. II. Effect of oscillatory activity on corticospinal output. J Neurophysiol. 2003;89:1941–53.PubMedCrossRefGoogle Scholar
  118. 118.
    Schoffelen JM, Oostenveld R, Fries P. Neuronal coherence as a mechanism of effective corticospinal interaction. Science. 2005;308:111–3.PubMedCrossRefGoogle Scholar
  119. 119.
    Rowland NC, Goldberg JA, Jaeger D. Cortico-cerebellar coherence and causal connectivity during slow-wave activity. Neuroscience. 2010;166:698–711.PubMedCrossRefGoogle Scholar
  120. 120.
    Watson TC, Becker N, Apps R, Jones MW. Back to front: cerebellar connections and interactions with the prefrontal cortex. Front Syst Neurosci. 2014;8:4.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16:645–9.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol. 2006;78:272–303.PubMedCrossRefGoogle Scholar
  123. 123.
    Barnes TD, Kubota Y, Hu D, Jin DZ, Graybiel AM. Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature. 2005;437:1158–61.PubMedCrossRefGoogle Scholar
  124. 124.
    Graybiel AM. Habits, rituals, and the evaluative brain. Ann Rev Neurosci. 2008;31:359–87.PubMedCrossRefGoogle Scholar
  125. 125.
    Graybiel AM. Templates for neural dynamics in the striatum: striosomes and matrisomes. In: Shepherd GM, Grillner S, editors. Handbook of brain microcircuits. New York: Oxford University Press; 2010. p. 120–6.CrossRefGoogle Scholar
  126. 126.
    Graybiel AM, Aosaki T, Flaherty AW, Kimura M. The basal ganglia and adaptive motor control. Science. 1994;265:1826–31.PubMedCrossRefGoogle Scholar
  127. 127.
    Graybiel AM. Building action repertoires: memory and learning functions of the basal ganglia. Curr Opin Neurobiol. 1995;5:733–41.PubMedCrossRefGoogle Scholar
  128. 128.
    Graybiel AM. The basal ganglia and cognitive pattern generators. Schizophr Bull. 1997;23:459–69.PubMedCrossRefGoogle Scholar
  129. 129.
    Aldridge JW, Berridge KC. Coding of serial order by neostriatal neurons: a “natural action” approach to movement sequence. J Neurosci. 1998;18:2777–87.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Morissette J, Bower JM. Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Exp Brain Res. 1996;109:240–50.PubMedCrossRefGoogle Scholar
  131. 131.
    Proville RD, Spolidoro M, Guyon N, Dugue GP, Selimi F, Isope P, et al. Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat Neurosci. 2014;17:1233–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Graybiel AM. The basal ganglia. Curr Biol. 2000;10:R509–11.PubMedCrossRefGoogle Scholar
  133. 133.
    Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31:236–50.CrossRefPubMedGoogle Scholar
  134. 134.
    Bloedel JR, Courville J, Brooks VB. Cerebellar afferent systems. In: Handbook of physiology; section 1: the nervous system; volume II: motor control, part 2. Bethesda, MD: American Physiological Society; 1981. p. 735–829.Google Scholar
  135. 135.
    Brodal P, Bjaalie JG, de Zeeuw CI, Strata P, Voogd J. Salient anatomic features of the cortico-ponto-cerebellar pathway. In: De Zeeuw CI, Strata P, Voogd J, editors. Progress in brain research: the cerebellum: from structure to control, vol. 114. Amsterdam: Elsevier Science BV; 1997. p. 227–49.CrossRefGoogle Scholar
  136. 136.
    Schmahmann JD, Pandya DN. The cerebrocerebellar system. In: The cerebellum and cognition—international review of neurobiology, vol. 41. San Diego: Academic Press; 1997. p. 31–60.Google Scholar
  137. 137.
    Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Ann Rev Neurosci. 2009;32:413–34.PubMedCrossRefGoogle Scholar
  138. 138.
    Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018;19:338–50.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Alexander GE, DeLong MR, Crutcher MD. Do cortical areas and basal ganglionic motor areas use “motor programs” to control movement? Behav Brain Sci. 1992;15:656–65.CrossRefGoogle Scholar
  140. 140.
    Dijkerman HC, de Haan EHF. Somatosensory processes subserving perception and action. Behav Brain Res. 2007;30:189–239.Google Scholar
  141. 141.
    Ahissar E, Haidarliu S, Zacksenhouse M. Decoding temporally encoded sensory input by cortical oscillations and thalamic phase comparators. Proc Natl Acad Sci U S A. 1997;94:11633–8.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Hutchison WD, Dostrovsky JO, Walters JR, Courtemanche R, Boraud T, Goldberg J, et al. Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J Neurosci. 2004;24:9240–3.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Courtemanche R, Robinson JC, Aponte DI. Linking oscillations in cerebellar circuits. Front Neural Circuits. 2013;7:125.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Llinás RR, Humphrey DR, Freund HJ. The noncontinuous nature of movement execution. In: Motor control: concepts and issues. Chichester, England: Wiley; 1991. p. 223–42.Google Scholar
  145. 145.
    Welsh JP, Llinas R. Some organizing principles for the control of movement based on olivocerebellar physiology. Prog Brain Res. 1997;114:449–61.PubMedCrossRefGoogle Scholar
  146. 146.
    Lang EJ, Sugihara I, Welsh JP, Llinás R. Patterns of spontaneous Purkinje cell complex spike activity in the awake rat. J Neurosci. 1999;19:2728–39.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Jacobson GA, Lev I, Yarom Y, Cohen D. Invariant phase structure of olivo-cerebellar oscillations and its putative role in temporal pattern generation. Proc Natl Acad Sci U S A. 2009;106:3579–84.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Llinás RR. Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience. 2009;162:797–804.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Pellerin JP, Lamarre Y. Local field potential oscillations in primate cerebellar cortex during voluntary movement. J Neurophysiol. 1997;78:3502–7.PubMedCrossRefGoogle Scholar
  150. 150.
    Hartmann MJ, Bower JM. Oscillatory activity in the cerebellar hemispheres of unrestrained rats. J Neurophysiol. 1998;80:1598–604.PubMedCrossRefGoogle Scholar
  151. 151.
    Courtemanche R, Pellerin JP, Lamarre Y. Local field potential oscillations in primate cerebellar cortex: modulation during active and passive expectancy. J Neurophysiol. 2002;88:771–82.PubMedCrossRefGoogle Scholar
  152. 152.
    O’Connor S, Berg RW, Kleinfeld D. Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking. J Neurophysiol. 2002;87:2137–48.PubMedCrossRefGoogle Scholar
  153. 153.
    Courtemanche R, Chabaud P, Lamarre Y. Synchronization in primate cerebellar granule cell layer local field potentials: basic anisotropy and dynamic changes during active expectancy. Front Cell Neurosci. 2009;3:6.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Dugué GP, Brunel N, Hakim V, Schwartz EJ, Chat M, Lévesque M, et al. Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron. 2009;61:126–39.PubMedCrossRefGoogle Scholar
  155. 155.
    Cheron G, Servais L, Dan B, Gall D, Roussel C, Schiffmann SN. Fast oscillation in the cerebellar cortex of calcium binding protein-deficient mice: a new sensorimotor arrest rhythm. Prog Brain Res. 2005;148:165–80.PubMedCrossRefGoogle Scholar
  156. 156.
    de Solages C, Szapiro G, Brunel N, Hakim V, Isope P, Buisseret P, et al. High-frequency organization and synchrony of activity in the Purkinje cell layer of the cerebellum. Neuron. 2008;58:775–88.PubMedCrossRefGoogle Scholar
  157. 157.
    D’Angelo E, Koekkoek SK, Lombardo P, Solinas S, Ros E, Garrido J, et al. Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience. 2009;162:805–15.PubMedCrossRefGoogle Scholar
  158. 158.
    De Zeeuw CI, Hoebeek FE, Bosman LW, Schonewille M, Witter L, Koekkoek SK. Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci. 2011;12:327–44.PubMedCrossRefGoogle Scholar
  159. 159.
    Welsh JP, Lang EJ, Sugihara I, Llinás R. Dynamic organization of motor control within the olivocerebellar system. Nature. 1995;374:453–7.PubMedCrossRefGoogle Scholar
  160. 160.
    Jacobson GA, Rokni D, Yarom Y. A model of the olivo-cerebellar system as a temporal pattern generator. Trends Neurosci. 2008;31:617–25.PubMedCrossRefGoogle Scholar
  161. 161.
    Courtemanche R, Lamarre Y. Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol. 2005;93:2039–52.PubMedCrossRefGoogle Scholar
  162. 162.
    Heck DH, Thach WT, Keating JG. On-beam synchrony in the cerebellum as the mechanism for the timing and coordination of movement. Proc Natl Acad Sci U S A. 2007;104:7658–63.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Courtemanche R, Fujii N, Graybiel AM. Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J Neurosci. 2003;23:11741–52.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Berke JD, Okatan M, Skurski J, Eichenbaum HB. Oscillatory entrainment of striatal neurons in freely moving rats. Neuron. 2004;43:883–96.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Boraud T, Brown P, Goldberg J, Graybiel AM, Magill PJ, Bolam JP, et al. Oscillations in the basal ganglia: the good, the bad, and the unexpected. In: The basal ganglia VIII. New York: Springer; 2005. p. 3–24.Google Scholar
  166. 166.
    DeCoteau WE, Thorn C, Gibson DJ, Courtemanche R, Mitra P, Kubota Y, et al. Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task. Proc Natl Acad Sci U S A. 2007;104:5644–9.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Tort AB, Kramer MA, Thorn C, Gibson DJ, Kubota Y, Graybiel AM, et al. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci U S A. 2008;105:20517–22.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Howe MW, Atallah HE, McCool A, Gibson DJ, Graybiel AM. Habit learning is associated with major shifts in frequencies of oscillatory activity and synchronized spike firing in striatum. Proc Natl Acad Sci U S A. 2011;108:16801–6.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Gatev P, Darbin O, Wichmann T. Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov Disord. 2006;21:1566–77.PubMedCrossRefGoogle Scholar
  170. 170.
    Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 2007;30:357–64.PubMedCrossRefGoogle Scholar
  171. 171.
    Deuschl G, Elble RJ. The pathophysiology of essential tremor. Neurology. 2000;54(Suppl 4):S14–20.PubMedGoogle Scholar
  172. 172.
    Brittain JS, Sharott A, Brown P. The highs and lows of beta activity in cortico-basal anglia loops. Eur J Neurosci. 2014;39:1951–9.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Yael D, Zeef DH, Sand D, Moran A, Katz DB, Cohen D, et al. Haloperidol-induced changes in neuronal activity in the striatum of the freely moving rat. Front Syst Neurosci. 2013;7:110.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Brazhnik E, Novikov N, McCoy AJ, Cruz AV, Walters JR. Functional correlates of exaggerated oscillatory activity in basal ganglia output in hemiparkinsonian rats. Exp Neurol. 2014;261:563–77.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    DeCoteau WE, Thorn C, Gibson DJ, Courtemanche R, Mitra P, Kubota Y, et al. Oscillations of local field potentials in the rat dorsal striatum during spontaneous and instructed behaviors. J Neurophysiol. 2007;97:3800–5.PubMedCrossRefGoogle Scholar
  176. 176.
    Lemaire N, Hernandez LF, Hu D, Kubota Y, Howe MW, Graybiel AM. Effects of dopamine depletion on LFP oscillations in striatum are task- and learning-dependent and selectively reversed by L-DOPA. Proc Natl Acad Sci U S A. 2012;109:18126–31.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Magill PJ, Sharott A, Bolam JP, Brown P. Brain state-dependence of coherent oscillatory activity in the cerebral cortex and basal ganglia of the rat. J Neurophysiol. 2004;92:2122–36.PubMedCrossRefGoogle Scholar
  178. 178.
    von Nicolai C, Engler G, Sharott A, Engel AK, Moll CK, Siegel M. Corticostriatal coordination through coherent phase-amplitude coupling. J Neurosci. 2014;34:5938–48.CrossRefGoogle Scholar
  179. 179.
    Raz A, Frechter-Mazar V, Feingold A, Abeles M, Vaadia E, Bergman H. Activity of pallidal and striatal tonically active neurons is correlated in MPTP-treated monkeys but not in normal monkeys. J Neurosci. 2001;21(RC128):1–5.Google Scholar
  180. 180.
    Mallet N, Pogosyan A, Sharott A, Csicsvari J, Bolam JP, Brown P, et al. Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J Neurosci. 2008;28:4795–806.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    West TO, Berthouze L, Halliday DM, Litvak V, Sharott A, Magill PJ, et al. Propagation of beta/gamma rhythms in the cortico-basal ganglia circuits of the parkinsonian rat. J Neurophysiol. 2018;119:1608–28.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Fries P. Rhythms for cognition: communication through coherence. Neuron. 2015;88:220–35.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Guillery RW, Sherman SM. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron. 2002;33:163–75.PubMedCrossRefGoogle Scholar
  184. 184.
    Basso MA, Uhlrich D, Bickford ME. Cortical function: a view from the thalamus. Neuron. 2005;45:485–8.PubMedCrossRefGoogle Scholar
  185. 185.
    Guillery RW. Anatomical pathways that link perception and action. In: Casagrande VA, Guillery RW, Sherman SM, editors. Progress in brain research. Vol 149: cortical function: a view from the thalamus. Amsterdam: Elsevier; 2005. p. 235–56.CrossRefGoogle Scholar
  186. 186.
    Arbib MA. The metaphorical brain: an introduction to cybernetics as artificial intelligence and brain theory. New York: Wiley-Interscience; 1972.Google Scholar
  187. 187.
    von Holst E, Mittelstaedt H. The reafference principle. Interaction between the central nervous system and the periphery. In: Behavioural physiology of animals and man: collected papers of Erich von Holst, vol. 1. Coral Gables, FL: University of Miami Press; 1973. p. 139–73.Google Scholar
  188. 188.
    Crispino L, Bullock TH. Cerebellum mediates modality-specific modulation of sensory responses of midbrain and forebrain in rat. Proc Natl Acad Sci U S A. 1984;81:2917–20.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Chapman CE, Jiang W, Lamarre Y. Modulation of lemniscal input during conditioned arm movements in the monkey. Exp Brain Res. 1988;72:316–34.PubMedCrossRefGoogle Scholar
  190. 190.
    Jiang W, Chapman CE, Lamarre Y. Modulation of the cutaneous responsiveness of neurones in the primary somatosensory cortex during conditioned arm movements in the monkey. Exp Brain Res. 1991;84:342–54.PubMedCrossRefGoogle Scholar
  191. 191.
    Cole JD, Gordon G. Corticofugal actions on lemniscal neurons of the cuneate, gracile and lateral cervical nuclei of the cat. Exp Brain Res. 1992;90:384–92.PubMedCrossRefGoogle Scholar
  192. 192.
    McCormick DA, Bal T. Sensory gating mechanisms of the thalamus. Curr Opin Neurobiol. 1994;4:550–6.PubMedCrossRefGoogle Scholar
  193. 193.
    Duysens J, Tax AAM, Nawijn S, Berger W, Prokop T, Altenmüller E. Gating of sensation and evoked potentials following foot stimulation during human gait. Exp Brain Res. 1995;105:423–31.PubMedGoogle Scholar
  194. 194.
    Bell CC, Bodznick D, Montgomery JC, Bastian J. The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol. 1997;50:17–31.PubMedCrossRefGoogle Scholar
  195. 195.
    Courtemanche R, Sun GD, Lamarre Y. Movement-related modulation across the receptive field of neurons in the primary somatosensory cortex of the monkey. Brain Res. 1997;777:170–8.PubMedCrossRefGoogle Scholar
  196. 196.
    Bell CC, Han V, Sawtell NB. Cerebellum-like structures and their implications for cerebellar function. Ann Rev Neurosci. 2008;31:1–24.PubMedCrossRefGoogle Scholar
  197. 197.
    Requarth T, Kaifosh P, Sawtell NB. A role for mixed corollary discharge and proprioceptive signals in predicting the sensory consequences of movements. J Neurosci. 2014;34:16103–16.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Blouin J, Bard C, Teasdale N, Paillard J, Fleury M, Forget R, et al. Reference systems for coding spatial information in normal subjects and a deafferented patient. Exp Brain Res. 1993;93:324–31.PubMedCrossRefGoogle Scholar
  199. 199.
    Paillard J, Richelle M, Requin J, Robert M. L’intégration sensori-motrice et idéomotrice. In: Traité de psychologie expérimentale. Paris: PUF; 1994.. [in French].Google Scholar
  200. 200.
    Varghese JP, Merino DM, Beyer KB, McIlroy WE. Cortical control of anticipatory postural adjustments prior to stepping. Neuroscience. 2016;313:99–109.PubMedCrossRefGoogle Scholar
  201. 201.
    Nicolelis MAL, Baccala LA, Lin RCS, Chapin JK. Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science. 1995;268:1353–8.PubMedCrossRefGoogle Scholar
  202. 202.
    Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005;9:474–80.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Strogatz SH, Stewart I. Coupled oscillators and biological synchronization. Sci Am. 1993:102–9.PubMedCrossRefGoogle Scholar
  204. 204.
    Strogatz SH. Sync: how order emerges from chaos in the universe, nature, and daily life. New York: Hyperion; 2003.Google Scholar
  205. 205.
    Sejnowski TJ, Paulsen O. Network oscillations: emerging computational principles. J Neurosci. 2006;26:1673–6.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Canavier CC. Phase-resetting as a tool of information transmission. Curr Opin Neurobiol. 2015;31:206–13.PubMedCrossRefGoogle Scholar
  207. 207.
    Bouyer JJ, Montaron MF, Rougeul A. Fast fronto-parietal rhythms during combined focused attentive behaviour and immobility in cat: cortical and thalamic localizations. Electroencephalogr Clin Neurophysiol. 1981;51:244–52.PubMedCrossRefGoogle Scholar
  208. 208.
    Pfurtscheller G. Central beta rhythm during sensorimotor activities in man. Electroencephalogr Clin Neurophysiol. 1981;51:253–64.PubMedCrossRefGoogle Scholar
  209. 209.
    Feingold J, Gibson DJ, DePasquale B, Graybiel AM. Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proc Natl Acad Sci U S A. 2015;112:13687–92.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Sun H, Blakely TM, Darvas F, Wander JD, Johnson LA, Su DK, et al. Sequential activation of premotor, primary somatosensory and primary motor areas in humans during cued finger movements. Clin Neurophysiol. 2015;126:2150–61.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK. Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron. 2008;60:709–19.PubMedCrossRefGoogle Scholar
  212. 212.
    Colgin LL, Moser EI. Neuroscience: rewinding the memory record. Nature. 2006;440:615–7.PubMedCrossRefGoogle Scholar
  213. 213.
    Buzsaki G, Moser EI. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci. 2013;16:130–8.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Cheron G, Marquez-Ruiz J, Dan B. Oscillations, timing, plasticity, and learning in the cerebellum. Cerebellum. 2016;15:122–38.PubMedCrossRefGoogle Scholar
  215. 215.
    Salazar RF, Dotson NM, Bressler SL, Gray CM. Content-specific fronto-parietal synchronization during visual working memory. Science. 2012;338:1097–100.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Hwang EJ, Andersen RA. Brain control of movement execution onset using local field potentials in posterior parietal cortex. J Neurosci. 2009;29:14363–70.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Liang H, Bressler SL, Ding M, Truccolo WA, Nakamura R. Synchronized activity in prefrontal cortex during anticipation of visuomotor processing. Neuroreport. 2002;13:2011–5.PubMedCrossRefGoogle Scholar
  218. 218.
    Sirota A, Montgomery S, Fujisawa S, Isomura Y, Zugaro M, Buzsaki G. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron. 2008;60:683–97.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Hummel F, Gerloff C. Larger interregional synchrony is associated with greater behavioral success in a complex sensory integration task in humans. Cereb Cortex. 2005;15:670–8.PubMedCrossRefGoogle Scholar
  220. 220.
    Hummel FC, Gerloff C. Interregional long-range and short-range synchrony: a basis for complex sensorimotor processing. Prog Brain Res. 2006;159:223–36.PubMedCrossRefGoogle Scholar
  221. 221.
    Kopell N, Ermentrout GB, Whittington MA, Traub RD. Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci U S A. 2000;97:1867–72.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Akam T, Kullmann DM. Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nat Rev Neurosci. 2014;15:111–22.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Engel AK, Fries P. Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol. 2010;20:156–65.PubMedCrossRefGoogle Scholar
  224. 224.
    Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1895;4:219–27.Google Scholar
  225. 225.
    Koch C. Consciousness: confessions of a romantic reductionist. Cambridge MA: MIT Press; 2012.CrossRefGoogle Scholar
  226. 226.
    Kastner S, Ungerleider LG. Mechanisms of visual attention in the human cortex. Annu Rev Neurosci. 2000;23:315–41.PubMedCrossRefGoogle Scholar
  227. 227.
    Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    MacKay WA, Mendonça AJ. Field potential oscillatory bursts in parietal cortex before and during reach. Brain Res. 1995;704:167–74.PubMedCrossRefGoogle Scholar
  229. 229.
    Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, et al. Modulation of neuronal interactions through neuronal synchronization. Science. 2007;316:1609–12.CrossRefPubMedGoogle Scholar
  230. 230.
    Douglas RJ, Martin KAC, Whitteridge D. A canonical microcircuit for neocortex. Neural Comput. 1989;1:480–8.CrossRefGoogle Scholar
  231. 231.
    Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for predictive coding. Neuron. 2012;76:695–711.PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Buzsaki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13:407–20.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Traub RD, Jefferys JG, Whittington MA. Simulation of gamma rhythms in networks of interneurons and pyramidal cells. J Comput Neurosci. 1997;4:141–50.PubMedCrossRefGoogle Scholar
  234. 234.
    Whittington MA, Traub RD. Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci. 2003;26:676–82.PubMedCrossRefGoogle Scholar
  235. 235.
    Buzsaki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–25.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Singer W, Engel AK, Kreiter AK, Munk MHJ, Neuenschwander S, Roelfsema PR. Neuronal assemblies: necessity, signature and detectability. Trends Cogn Sci. 1997;1:252–61.PubMedCrossRefGoogle Scholar
  237. 237.
    Buffalo EA, Fries P, Landman R, Buschman TJ, Desimone R. Laminar differences in gamma and alpha coherence in the ventral stream. Proc Natl Acad Sci U S A. 2011;108:11262–7.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Bollimunta A, Mo J, Schroeder CE, Ding M. Neuronal mechanisms and attentional modulation of corticothalamic alpha oscillations. J Neurosci. 2011;31:4935–43.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Igarashi J, Isomura Y, Arai K, Harukuni R, Fukai T. A theta-gamma oscillation code for neuronal coordination during motor behavior. J Neurosci. 2013;33:18515–30.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Lisman JE, Idiart MAP. Storage of 7 +/− 2 short-term memories in oscillatory subcycles. Science. 1995;267:1512–5.PubMedCrossRefGoogle Scholar
  241. 241.
    Jensen O, Lisman JE. Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends Neurosci. 2005;28:67–72.PubMedCrossRefGoogle Scholar
  242. 242.
    Aru J, Aru J, Priesemann V, Wibral M, Lana L, Pipa G, et al. Untangling cross-frequency coupling in neuroscience. Curr Opin Neurobiol. 2014;31C:51–61.Google Scholar
  243. 243.
    Hyafil A, Giraud AL, Fontolan L, Gutkin B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci. 2015;38:725–40.PubMedCrossRefGoogle Scholar
  244. 244.
    Donner TH, Siegel M, Fries P, Engel AK. Buildup of choice-predictive activity in human motor cortex during perceptual decision making. Curr Biol. 2009;19:1581–5.PubMedCrossRefGoogle Scholar
  245. 245.
    Siegel M, Warden MR, Miller EK. Phase-dependent neuronal coding of objects in short-term memory. Proc Natl Acad Sci U S A. 2009;106:21341–6.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Canolty RT, Knight RT. The functional role of cross-frequency coupling. Trends Cogn Sci. 2010;14:506–15.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Bonnefond M, Kastner S, Jensen O. Communication between brain areas based on nested oscillations. eNeuro. 2017;4(2). pii: ENEURO.0153–16.2017.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Alekseichuk I, Turi Z, Amador de Lara G, Antal A, Paulus W. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr Biol. 2016;26:1513–21.PubMedCrossRefGoogle Scholar
  249. 249.
    Helfrich RF, Knight RT. Oscillatory dynamics of prefrontal cognitive control. Trends Cogn Sci. 2016;20:916–30.PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Bressler SL, Tang W, Sylvester CM, Shulman GL, Corbetta M. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J Neurosci. 2008;28:10056–61.PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Mayer A, Schwiedrzik CM, Wibral M, Singer W, Melloni L. Expecting to see a letter: alpha oscillations as carriers of top-down sensory predictions. Cereb Cortex. 2016;26:3146–60.PubMedCrossRefGoogle Scholar
  252. 252.
    Baker SN. Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol. 2007;17:649–55.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    de Lange FP, Jensen O, Bauer M, Toni I. Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions. Front Hum Neurosci. 2008;2:7.PubMedPubMedCentralGoogle Scholar
  254. 254.
    Cannon J, McCarthy MM, Lee S, Lee J, Borgers C, Whittington MA, et al. Neurosystems: brain rhythms and cognitive processing. Eur J Neurosci. 2014;39:705–19.PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Richter CG, Thompson WH, Bosman CA, Fries P. Top-down beta enhances bottom-up gamma. J Neurosci. 2017;37:6698–711.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Marshall PJ, Bouquet CA, Shipley TF, Young T. Effects of brief imitative experience on EEG desynchronization during action observation. Neuropsychologia. 2009;47:2100–6.PubMedCrossRefGoogle Scholar
  257. 257.
    Dufour B, Thenault F, Bernier PM. Theta-band EEG activity over sensorimotor regions is modulated by expected visual reafferent feedback during reach planning. Neuroscience. 2018;385:47–58.PubMedCrossRefGoogle Scholar
  258. 258.
    Duhamel JR, Colby CL, Goldberg ME. The updating of the representation of visual space in parietal cortex by intended eye movements. Science. 1992;255:90–2.PubMedCrossRefGoogle Scholar
  259. 259.
    Zhong W, Ciatipis M, Wolfenstetter T, Jessberger J, Muller C, Ponsel S, et al. Selective entrainment of gamma subbands by different slow network oscillations. Proc Natl Acad Sci U S A. 2017;114:4519–24.PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Popa D, Spolidoro M, Proville RD, Guyon N, Belliveau L, Lena C. Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. J Neurosci. 2013;33:6552–6.PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Wolinski N, Cooper NR, Sauseng P, Romei V. The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol. 2018;16:e2005348.PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Farmer SF. Rhythmicity, synchronization and binding in human and primate motor systems. J Physiol (London). 1998;509:3–14.CrossRefGoogle Scholar
  263. 263.
    Newman MEJ. Networks: an introduction. Oxford, UK: Oxford University Press; 2010.CrossRefGoogle Scholar
  264. 264.
    Sporns O. Networks of the brain. Cambridge, MA: MIT Press; 2011.Google Scholar
  265. 265.
    Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–98.PubMedCrossRefGoogle Scholar
  266. 266.
    Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012;13:336–49.PubMedCrossRefGoogle Scholar
  267. 267.
    van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends Cogn Sci. 2013;17:683–96.PubMedCrossRefGoogle Scholar
  268. 268.
    Misic B, Sporns O. From regions to connections and networks: new bridges between brain and behavior. Curr Opin Neurobiol. 2016;40:1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    van den Heuvel MP, Bullmore ET, Sporns O. Comparative connectomics. Trends Cogn Sci. 2016;20:345–61.PubMedCrossRefGoogle Scholar
  270. 270.
    Nemani A, Yucel MA, Kruger U, Gee DW, Cooper C, Schwaitzberg SD, et al. Assessing bimanual motor skills with optical neuroimaging. Sci Adv. 2018;4:eaat3807.PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Cayer L. Le tennis rendu facile. Montréal: Les Éditions Québécor; 1989 [in French]Google Scholar
  272. 272.
    Brechbühl J. La maîtrise du tennis. Lausanne, Suisse: Payot; 1982 [in French]Google Scholar
  273. 273.
    Gilbert B, Jamison S. Winning ugly. New York: Fireside; 1993.Google Scholar
  274. 274.
    Gallwey WT. The inner game of tennis. New York: Bantam Books; 1979.Google Scholar
  275. 275.
    Foster Wallace D. String theory. New York: Library of America; 2016.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Health, Kinesiology, and Applied PhysiologyCenter for Studies in Behavioral Neurobiology, PERFORM Center, Concordia UniversityMontréalCanada
  2. 2.Department of NeurosciencesInstitut de Biologie de l’Ecole Normale SupérieureParisFrance

Personalised recommendations