Skip to main content

Static Dimensional Analysis

  • Chapter
  • First Online:
Approximation Methods in Science and Engineering
  • 471 Accesses

Abstract

Science and engineering mathematical formulas are based on proportionality, principle of superposition, and dimensional homogeneity. This chapter reviews the development of the concept of dimensions and shows how to use them in the study of physical phenomena described by mathematical equations. By studying this chapter, you will learn why and how the concept of physical dimensions have been invented and expanded, and the method of expressing the relation among physical quantities by mathematical equations. The expansion of the dimensional concept to cover the mathematical equation is the dimensional homogeneity, of which its need and use will be covered in this chapter. There are seven accepted basic dimensional quantities in engineering and science: Length [L], Mass [M], Time [T], Electric Current [I], Temperature [Θ], Amount of Substance [N], Luminous [J]. Every other physical quantity is a derived quantity whose dimension is a multiplication of the basic dimensional quantity. The classical static dimensional analysis determines the powers of the involved parameters, variables, and constants contributing in a physical equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bivar, A. D. H. (1985). Achaemenid coins, weights and measures, pp. 610–639. London, UK: Cambridge History Iran II.

    Google Scholar 

  • Bhargava, H. K. (1991). Dimensional analysis in mathematical modeling systems: a simple numerical method. Monterey, CA: Naval Postgraduate School.

    Book  Google Scholar 

  • Cajori, F. (1893). A history of mathematics. London: The Macmillan company.

    MATH  Google Scholar 

  • Cajori, F. (1915). Origin of a mathematical symbol for variation. Nature, 95, 562.

    Article  Google Scholar 

  • Cajori, F. (1928–1929). A history of mathematical notations, 2 volumes. La Salle, IL: The Open Court Publishing Company

    MATH  Google Scholar 

  • Cardarelli, F. (2003). Encyclopaedia of scientific units, weights, and measures: Their SI equivalences and origins. London, UK: Springer.

    Book  Google Scholar 

  • Carlslaw, H. W. (1921). Introduction to the mathematical theory of conduction of heat in solids, 2nd edn. London, UK: MacMillan.

    Google Scholar 

  • Chandrasekhar, S. (1995). Newton’s principia for the common reader. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Child, J. M. (1916). The geometrical lectures of Issac Barrow. London: The Open Court Publishing Company.

    Google Scholar 

  • Clemence, G. M. (1948). On the system of astronomical constants. The Astronomical Journal, 53, 169–179.

    Article  Google Scholar 

  • Cotes, R. A. M. (1738). Hydrostatical and pneumatical lectures, angel and bible, Cambridge, UK.

    Google Scholar 

  • Danjon, A. (1929). L’Astronomie, XLIII, 13–22.

    Google Scholar 

  • Dershowitz, N., & Reingold, E. M. (2008). Calendrical calculations, 3rd edn. New York, USA: Cambridge University Press.

    MATH  Google Scholar 

  • de Sitter, W. (1927). Bull. of the Astron. Institutes of the Netherlands, IV, 21–38.

    Google Scholar 

  • Edleston, J. (1850). Correspondence of Sir Isaac Newton and Professor Cotes. London.

    MATH  Google Scholar 

  • Emerson, W. (1768). The doctrine of fluxions, 3rd edn. London, UK: Robinson and Roberts.

    Google Scholar 

  • Euclid (Author), Heiberg, J. L. (Editor), Fitzpatrick, R. (Translator) (2007). Euclid’s elements of geometry. Richard Fitzpatrick.

    Google Scholar 

  • Feingold, M. (1990). Before Newton: The life and times of Isaac Barrow. New York: Cambridge University Press.

    Book  Google Scholar 

  • Feynman, R. P., Leighton, R. B., & Sands, M. (2010). The Feynman lectures on physics. California Institute of Technology: New Millennium Edition.

    MATH  Google Scholar 

  • Gelfond, A. O. (1960). The solution of equations in integers. Groningen, The Netherlands: P. Noordhoff Ltd.

    MATH  Google Scholar 

  • Haynes, R. M. (1975). Dimensional analysis: some applications in human geography. Geographical Analysis, 7, 51–68.

    Article  Google Scholar 

  • Heath, T. L. (1956). Euclid’s the thirteen books of the elements, 2nd edn. Dover Publications.

    MATH  Google Scholar 

  • Hockey, T., et al. (Eds.). (2007). The biographical encyclopedia of astronomers. Springer reference. New York: Springer.

    Google Scholar 

  • Jazar, R. N. (2019). Advanced vehicle dynamics. New York: Springer.

    Book  Google Scholar 

  • Jazar, R. N. (2017). Vehicle dynamics: theory and application, 3rd edn. New York: Springer.

    Book  Google Scholar 

  • Jazar, R. N. (2011). Advanced dynamics: rigid body, multibody, and aero-space applications. New York: Wiley.

    Book  MATH  Google Scholar 

  • ISO Standards Handbook. (1993). UDC 389.15, Quantities and Units, 3rd edn. Switzerland: International Organization for Standardization.

    Google Scholar 

  • Kovalevsky, J., & Seidelmann, P. K. (2004). Fundamentals of astrometry. UK: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Langhaar, H. L. (1951). Dimensional analysis and theory of models. Canada: John Wiley & Sons.

    MATH  Google Scholar 

  • Maor, E. (1998). Trigonometric delights. Princeton University Press.

    MATH  Google Scholar 

  • Markowitz, W., Hall, R. G., Essen, L., & Perry, J. V. L. (1958). Frequency of cesium in terms of ephemeris time. Phys. Rev. Letters, 1, 105.

    Article  Google Scholar 

  • Martins, R. De. A. (1981). The origin of dimensional analysis. Journal of the Franklin Institute, 311(5), 331–337.

    Article  MathSciNet  MATH  Google Scholar 

  • Maxwell, J. C. (1871). On the mathematical classification of physical quantities. Proceeding London Mathematical Society, III(34), 224.

    MATH  Google Scholar 

  • Maxwell, J. C. (1894). Theory of heat. London: Longmans, Green.

    Google Scholar 

  • McCarthy, D. D., & Seidelmann, P. K. (2009). TIME from earth rotation to atomic physic. Weinheim, Germany: Wiley-VCH.

    Book  MATH  Google Scholar 

  • Mohr, P. J., & Phillips, W. D. (2015). Dimensionless units in the SI. Metrologia, 52(2015), 40–47.

    Article  Google Scholar 

  • Morikawa, T., & Newbold, B. (2005). Teaching the unit “Radian” as a physical quantity. Chemistry, 14(5), 483–487.

    Google Scholar 

  • Myŝkis, A. D. (1972). Introductory mathematics for engineers: lectures in higher mathematics (trans: from the Russian by Yolosoy, V. M.). Moscow: Mir Publishers.

    Google Scholar 

  • Nejad, E. A., & Aliabadi, M. (2015). The role of mathematics and geometry in formation of Persian architecture. Asian Culture and History, 7(1), 220.

    Google Scholar 

  • Page, C. H. (1961). Journal of Research of the National Bureau of Standards-B. Mathematics and Mathematical Physics, 65B(4), 227–235.

    Google Scholar 

  • Philip, A. (1921). The calendar, its history, structure and improvement. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Pickover, C. A. (2008). Archimedes to Hawking: laws of science and the great minds behind them. New York: Oxford University Press.

    MATH  Google Scholar 

  • Pickover, C. A. (2009). The math book: From Pythagoras to the 57th dimension, 250 milestones in the history of mathematics. New York: Sterling Publishing.

    MATH  Google Scholar 

  • Qurbani, A. (1989). Kashani Nameh [A monograph on Ghiyāth al-Dı̄n Jamshı̄d Mas‘ūd al-Kāshı̄]. Publication No. 1322 of Tehran University, Tehran, Iran (1971). Revised edition (1989).

    Google Scholar 

  • Romain, J. E. (1962). Angle as a fourth fundamental quantity. Journal of Research of the National Bureau of Standards-B. Mathematics and Mathematical Physics, 66B(3), 97–100.

    Google Scholar 

  • Sedov, L. I. (1993). Similarity and dimensional analysis in mechanics (10th ed.). Boca Raton, FL: CRC press.

    Google Scholar 

  • Spencer, J. H. (1939). The rotation of the earth, and the secular accelerations of the sun, moon and planets. Monthly Not. R.A.S., 99, 541.

    Article  Google Scholar 

  • Stahl, W. R. (1961). Dimensional analysis in mathematical biology, I. General discussion. Bulletin of Mathematical Biophysics, 24, 81–108.

    Article  MathSciNet  Google Scholar 

  • Stahl, W. R. (1962). Dimensional analysis in mathematical biology, II. Bulletin of Mathematical Biophysics, 24, 81–108.

    Article  MathSciNet  Google Scholar 

  • Szirtes, T. (2007). Applied dimensional analysis and modeling. Oxford, UK: Butterworth-Heinemann, Elsevier.

    MATH  Google Scholar 

  • Treese, S. A. (2018). History and measurement of the base and derived units. New York: Springer.

    Book  MATH  Google Scholar 

  • Turner, G. C. (1909). Graphical methods in applied mathematics; a course of work in mensuration and statics for engineering and other students. London, UK: Macmillan and Co.

    Google Scholar 

  • Vygodsky, M. (1984). Mathematical handbook, elementary mathematics. Moscow: Mir Publishers.

    Google Scholar 

  • Wikipedia. (2019). History of measurement, http://en.wikipedia.org/wiki/History_of_measurement. Accessed 30 September 2019.

  • Yarin, L. P. (2012). The pi-theorem, application to fluid mechanics and heat and mass transfer. Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

N. Jazar, R. (2020). Static Dimensional Analysis. In: Approximation Methods in Science and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0480-9_1

Download citation

Publish with us

Policies and ethics