Skip to main content

Air Cavity Ships Concept Evaluation Planing Types

  • Chapter
  • First Online:
Air Lubricated and Air Cavity Ships

Abstract

A planing hull is supported almost entirely by dynamic forces and so its elevation and trim angle relative to still waterline vary uniquely with forward speed. In this chapter we will look at the influence of various hull parameters on the drag and trim of a planing hull and planing air cavity craft (ACC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cv = V/(g B)0.5.

  2. 2.

    Fn = V/(g1/3)0.5.

References

  1. Murray, A.: The hydrodynamics of planing hulls. Trans. Soc. Naval Architects Marine Eng. 58, 658–692 (1950)

    Google Scholar 

  2. Savitsky, D.: Hydrodynamic design of planing hulls. Marine Technol. 1, 71–95 (1964). published by Society of Naval Architects and Marine Engineers, New York, USA

    Google Scholar 

  3. Savitsky, D., Ward Brown, P.: Procedures for hydrodynamic evaluation of planing hulls in smooth and rough water. Marine Technol. 13, 381–400 (1976)., published by Society of Naval Architects and Marine Engineers, New York, USA

    Google Scholar 

  4. Matveev, K.I.: Hydrodynamic modelling of semi-planing hulls with air cavities. Int. J. Naval Archit. Ocean Eng. 7, 500–508 (2015). https://doi.org/10.1515/ijnaoe-2015-0036, eISSN:2092-6790 An open access article distributed under the terms of the Creative Commons

    Article  Google Scholar 

  5. Yun, L., Bliault, A.: Theory and Design of Air Cushion Craft. Hodder Headline/Elsevier, London (2000). ISBN 0 340 67650 7

    Google Scholar 

  6. Alourdas, P.G.: Planing Hull Resistance Calculation – The CAHI Method, Presentation made at SNAME Greek Section Meeting, 13th October 2016. The presentation is available on line at: https://higherlogicdownload.s3.amazonaws.com/SNAME/a09ed13c-b8c0-4897-9e87-eb86f500359b/UploadedImages/2016-2017/Alourdas Complimentary Notes.pdfD

  7. Svahn, D.: Performance prediction of hulls with transverse steps. Master’s Thesis at Royal Institute of Technology, KTH, Centre for Naval Architecture, Stockholm, Sweden (2009)

    Google Scholar 

  8. Wagner, H.: The phenomena of impact and planing on water, NACA TM 1366 August 1932

    Google Scholar 

  9. Savitsky, D., DeLorme, M., Datla, R.: Inclusion of “Whisker Spray” Drag in Performance Prediction Method for High-Speed Planing Hulls. Davidson Laboratory/Stevens Institute of Technology, Hoboken, Technical Report SIT-DL-06-9-2845 (2006)

    Google Scholar 

  10. Sottorf, W.: Experiments with Planing surfaces, NACA TM 661 1932 and NACA TM 739 (1934)

    Google Scholar 

  11. Grigoropoulos, G.J., Loukakis, T.A.: Effect of spray rails on the resistance of planing hulls, FAST 1995, Lubeck- Travemunde, Germany, Transactions Volume 1, pp 33–44. Looked at chine located horizontal spray rails on models of the series 62 form, deep vee, double chine and rounded bilge form. Results mixed while positive in reducing resistance at higher speeds

    Google Scholar 

  12. Mercier, J.A., Savitsky, D.: Resistance of Transom Shear Craft in the Pre-planing Range. Davidson Laboratory Report 1667. Stevens Institute of Technology, Hoboken (1973)

    Google Scholar 

  13. Doctors, L.J.: A Numerical Study of the Resistance of Transom-Stern Monohulls. In: 5th International Conference on High Performance Marine Vehicles, 8–10 November 2006

    Google Scholar 

  14. Yun, L., Bliault, A.: High Speed Catamarans and Multihulls, Technology, Performance and Applications, Chapter 4. Springer Publications, New York (2018). ISBN-13: 978-1493978892

    Google Scholar 

  15. Doctors, L.J.: Influence of the Transom-Hollow Length on Wave Resistance’. In: International Workshop on waves and floating bodies, www.iwwwfb.org session 21, 2nd–5th April 2006, Loughborough, UK, Available at http://iwwwfb.org/Abstracts/iwwwfb21/iwwwfb21_10.pdf

  16. Savitsky, D., Morabito, M.: Surface Wave Contours Associated with the Forebody Wake of Stepped Planing Hulls, Davidson Laboratory Technical Memo #181. Stevens Institute of Technology, Hoboken (2009)

    Google Scholar 

  17. Savitsky, D., Morabito, M.: Surface Wave Contours Associated with the Forebody Wake of Stepped Planing Hulls. Presentation to the New York Metropolitan Section of SNAME, 10 March 2009

    Google Scholar 

  18. Matveev, K.I.: Two dimensional modelling of stepped planing hulls with open and pressurized air cavities. Int. J. Naval Archit. Ocean Eng. 4, 162–171 (2012). www.dx.doi.org/10.2478/IJNAOE-2013-0087

    Article  Google Scholar 

  19. Kuhn de Chizelle, Y.K., Ceccio, S.L., Brennen, C.E.: Observations and scaling of travelling bubble cavitation. J. Fluid Mech. 293, 99–126 (1995)

    Article  Google Scholar 

  20. Dong, W.C., et al.: Experimental investigation for reducing drag with aid of air injection on the bottom of planing hull craft. In: Proceedings, HPMV Conference, 19–23 April 2000, Shanghai

    Google Scholar 

  21. Chen, H.C.: Test study resistance reduction of bubble ship. In: Proceedings, HPMV Conference, 8–11 April 2010, Shanghai

    Google Scholar 

  22. Chen, H.X., et al.: Design and exploitation of a new air bubble Navigation-Guide Ship (ACC)”, China Ship Scientific Research Center (CSSRC). In: Proceedings of HPMV Conference, 2011, Shanghai, China

    Google Scholar 

  23. Pavlov, G.A., Yun, L.: Development & performance of air cavity craft. In: Proceedings of HPMV Conference, 2001, Shanghai, China

    Google Scholar 

  24. Yun, L., et al.: Development of Russian WIG and Air Cavity Craft in 2nd Generation”. In: Proceedings of HPMV Conference, April, 2002, Shanghai, China

    Google Scholar 

  25. Basin, A.M., Frenkel, M.I., Starobinsky, V.B., Oskolsky, A.A., Gorodetsky, A.Z., Migachev, V.I., Belkin, A.B.: Gliding vessel. USSR Patent No. 368107, filed 23 Apr 1970, published 26 Jan 1973

    Google Scholar 

  26. Burnaev, V.I., Ovsienko, E.I.: The hull of a speeding vessel. Russian patent No 2161105, filed 28 Apr 1999, published 27 Dec 2000

    Google Scholar 

  27. Privalov, E.I., Vasilevcki, I.M., Ajzen, S.N., Danilov, G.A., Platonov, S.V., Perelman, B.S.: High-speed Vessel at Delivery of Air under Bottom. Russian patent No 2263602, filed 01 Sept 2003, published 10 Nov 2005

    Google Scholar 

  28. Chubikov, B.V., Pavlenko, A.N., Privalov, E.I., Aizen, S.N., Timofeev, B.R.: Vessel having a high-speed planing or semi-planing Hull. International patent WO 95/14604, filed 28 Nov 1994, published 01 June 1995

    Google Scholar 

  29. Chaban, J.V., Matveev, K.I., Ya Rogozhkin, S., Matveev, K.I., Еzhov, M.V.: High speed craft. Russian patent No 2041116, filed 08 Sept 1993, published 09 Aug 1995

    Google Scholar 

  30. Chaban, J.V., Matveev, K.I., Ya Rogozhkin, S., Matveev, K.I., Еzhov, M.V.: High-speed Boat. International patent WO 95/07210, filed 18 Nov 1993, published 16 Mar 1995

    Google Scholar 

  31. Chaban, J.V., Matveev, K.I., Ya Rogozhkin, S., Matveev, K.I., Еzhov, M.V.: High-speed Boat. Russian patent EP No 0667282, filed 18 Nov 1993, published 09 June 1999

    Google Scholar 

  32. Pavlov, G.A., Pridatko, Y.P., Epel, M.L.: High speed craft. Russian patent No 2153998, filed 27 May 1999, published 10 Aug 2000

    Google Scholar 

  33. Pavlov, G.A., Pridatko, Y.P., Epel, M.L.: High speed craft. Ukraine patent No 33974, filed 06 May 1999, published 15 Feb 2001

    Google Scholar 

  34. Sverchkov, A.V.: Device for carrying out hydrodynamic experiments at high speed with artificial air cavity craft model in towing tank. Russian patent No 2535384, filed 18 June 2013, published 10 Dec 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

5.1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pavlov, G.A., Yun, L., Bliault, A., He, SL. (2020). Air Cavity Ships Concept Evaluation Planing Types. In: Air Lubricated and Air Cavity Ships. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0425-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0425-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-0423-6

  • Online ISBN: 978-1-0716-0425-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics