Skip to main content

Weighted Modulation Spaces

  • Chapter
  • First Online:
  • 596 Accesses

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

The concept of weight function appears ubiquitously in harmonic analysis. A weight is a nonnegative measurable function that, depending on the context, quantifies more precisely growth, decay, or smoothness. A classic example in the linear and multilinear Calderón-Zygmund theory is played by the nowadays well-understood A p classes of weights of Muckenhoupt-Wheeden which give natural weighted norm inequalities on Lebesgue spaces for the maximal operator, singular integrals, and much more. The A p-weights are intrinsically connected to reverse Hölder inequalities and they were from their inception important in the theory of conformal mappings and boundary-value problems for the Laplace equation on a bounded domain with Lipschitz boundary; see García-Cuerva and Rubio de Francia (Weighted Norm Inequalities and Related Topics. Elsevier, North-Holland, 1985) for more details about these topics. The special interest in the A 2-class and the subsequent settling of the so-called A 2-conjecture by Hytönen (Ann Math 175(3):1473–1506, 2012) came amid a flurry of works that introduced new ideas and techniques to this area of research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bényi, Á., Oh, T.: Modulation spaces, Wiener amalgam spaces, and Brownian motions. Adv. Math. 228(5), 2943–2981 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bényi, Á., Okoudjou, K.A.: Local well-posedness of nonlinear dispersive equations on modulation spaces. Bull. Lond. Math. Soc. 41, 549–558 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bhimani, D.G., Ratnakumar, P.K.: Functions operating on modulation spaces and nonlinear dispersive equations. J. Funct. Anal. 270(2), 621–648 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bhimani, D.G., Ratnakumar, P.K.: Erratum to “Functions operating on modulation spaces and nonlinear dispersive equations”. J. Funct. Anal. 270(6), 2375 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14(4), 209–246 (1981)

    Article  MathSciNet  Google Scholar 

  6. Chen, J.C., Huang, Q., Zhu, X.R.: Non-integer power estimate in modulation spaces and its applications. Sci. China Math. 60(8), 1443–1460 (2017)

    Article  MathSciNet  Google Scholar 

  7. Dahlberg, B.: Estimates of harmonic measure. Arch. Ration. Mech. Anal. 65, 275–288 (1977)

    Article  MathSciNet  Google Scholar 

  8. Dahlberg, B.: On the Poisson integral for Lipschitz and C 1 domanins. Studia Math. 66, 13–24 (1979)

    Article  MathSciNet  Google Scholar 

  9. Feichtinger, H.G.: Modulation spaces on locally compact abelian groups. In: Radha, R., Krishna, M., Thangavelu, S. (eds.) Proceeding of International Conference on Wavelets and Applications (Chennai, 2002), pp. 1–56. New Delhi Allied, New Delhi (2003). Technical report, University of Vienna (1983)

    Google Scholar 

  10. García-Cuerva, J., Rubio de Francia, L.: Weighted Norm Inequalities and Related Topics. Elsevier, North-Holland (1985)

    Google Scholar 

  11. Gehring, F.W.: The L p integrability of the partial derivative of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)

    Article  MathSciNet  Google Scholar 

  12. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  13. Gröchenig, K.: Weight functions in time-frequency analysis. In: Pseudo-Differential Operators, Partial Differential Equations and Time-Frequency Analysis. Fields Institute Communications, vol. 52, pp. 343–366. American Mathematical Society, New York (2007)

    Google Scholar 

  14. Gröchenig, K., Toft, J.: Isomorphism properties of Toeplitz operators and pseudo-differential operators between modulation spaces. J. Anal. Math. 114, 255–283 (2011)

    Article  MathSciNet  Google Scholar 

  15. Guo, W., Fan, D., Wu, H., Zhao, G.: Sharp weighted convolution inequalities and some applications. Studia Math. 241(3), 201–239 (2018)

    Article  MathSciNet  Google Scholar 

  16. Han, L., Huang, C., Wang, B.X.: Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data. Ann. I.H. Poincaré 26, 2253–2281 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Heil, C., Powel, A.: Gabor Schauder bases and the Balian-Low theorem. J. Math. Phys. 47(11), 113506, 21 pp. (2006)

    Article  MathSciNet  Google Scholar 

  18. Hytönen, T.: The sharp weighted bound for general Calderón-Zygmund operators. Ann. Math. 175(3), 1473–1506 (2012)

    Article  MathSciNet  Google Scholar 

  19. Kahane, J.P.: Series de Fourier absolument convergentes. Springer, Berlin (1970)

    Book  Google Scholar 

  20. Kato, T., Sugimoto, M., Tomita, N.: Nonlinear operations on a class of modulation spaces (2018). arXiv: 1801.06803v1

    Google Scholar 

  21. Kobayashi, M., Sato, E.: Operating functions on modulation and Wiener amalgam spaces. Nagoya Math. J. 230, 72–82 (2018)

    Article  MathSciNet  Google Scholar 

  22. Meyer, Y.: Remarques sur un théorème de J.-M. Bony. In: Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980). Rendiconti del Circolo Matematico di Palermo, vol. 2(1), pp. 1–20 (1981)

    Google Scholar 

  23. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MathSciNet  Google Scholar 

  24. Muckenhoupt, B., Wheeden, R.L.: Weighted bounded mean oscillation and the Hilbert transform. Studia Math. 54, 221–237 (1976)

    Article  MathSciNet  Google Scholar 

  25. Runst, T.: Paradifferential operators in spaces of Triebel-Lizorkin and Besov type. Z. Anal. Anwendungen 4, 557–573 (1985)

    Article  MathSciNet  Google Scholar 

  26. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  27. Sugimoto, M., Tomita, N., Wang, B.X.: Remarks on nonlinear operations on modulation spaces. Integral Transforms Spec. Funct. 22(4–5), 351–358 (2011)

    Article  MathSciNet  Google Scholar 

  28. Taylor, M.E.: Pseudodifferential Operators and Nonlinear PDEs. Birkhäuser, Boston (1991)

    Book  Google Scholar 

  29. Taylor, M.E.: Tools for PDE: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials. Mathematical Surveys and Monographs, vol. 81. American Mathematical Society, New York (2000)

    Google Scholar 

  30. Toft, J.: Convolutions and embeddings for weighted modulation spaces. In: Advances in Pseudodifferential Operators, pp. 165–186. Birkhäuser, Basel (2004)

    Chapter  Google Scholar 

  31. Toft, J.: Pseudo-differential operators with smooth symbols on modulation spaces. Cubo 11(4), 87–107 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bényi, Á., Okoudjou, K.A. (2020). Weighted Modulation Spaces. In: Modulation Spaces. Applied and Numerical Harmonic Analysis. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-0716-0332-1_5

Download citation

Publish with us

Policies and ethics