Visual Analysis of Humans pp 511-538 | Cite as
Social Signal Processing: The Research Agenda
- 28 Citations
- 2.8k Downloads
Abstract
The exploration of how we react to the world and interact with it and each other remains one of the greatest scientific challenges. Latest research trends in cognitive sciences argue that our common view of intelligence is too narrow, ignoring a crucial range of abilities that matter immensely for how people do in life. This range of abilities is called social intelligence and includes the ability to express and recognise social signals produced during social interactions like agreement, politeness, empathy, friendliness, conflict, etc., coupled with the ability to manage them in order to get along well with others while winning their cooperation. Social Signal Processing (SSP) is the new research domain that aims at understanding and modelling social interactions (human-science goals), and at providing computers with similar abilities in human–computer interaction scenarios (technological goals). SSP is in its infancy, and the journey towards artificial social intelligence and socially aware computing is still long. This research agenda is twofold, a discussion about how the field is understood by people who are currently active in it and a discussion about issues that the researchers in this formative field face.
Notes
Acknowledgements
This work has been funded in part by the European Community’s 7th Framework Programme [FP7/20072013] under grant agreement no. 231287 (SSPNet).
References
- 1.Albrecht, K.: Social Intelligence: The New Science of Success. Wiley, New York (2005) Google Scholar
- 2.Allwood, J.: Cooperation and flexibility in multimodal communication. In: Bunt, H., Beun, R. (eds.) Cooperative Multimodal Communication. Lecture Notes in Computer Science, vol. 2155, pp. 113–124. Springer, Berlin (2001) Google Scholar
- 3.Ambady, N., Rosenthal, R.: Thin slices of expressive behavior as predictors of interpersonal consequences: A meta-analysis. Psychol. Bull. 111(2), 256–274 (1992) Google Scholar
- 4.Bänziger, T., Scherer, K.: Using actor portrayals to systematically study multimodal emotion expression: The GEMEP corpus. In: Paiva, A., Prada, R., Picard, R. (eds.) Affective Computing and Intelligent Interaction. Lecture Notes in Computer Science, vol. 4738, pp. 476–487. Springer, Berlin (2007) Google Scholar
- 5.Bates, J.: The role of emotion in believable agents. Commun. ACM 37(7), 122–125 (1994) Google Scholar
- 6.Beer, C.G.: What is a display? Am. Zool. 17(1), 155–165 (1977) MathSciNetGoogle Scholar
- 7.Berscheid, E., Reis, H.T.: Attraction and close relationships. In: Lindzey, G., Gilbert, D.T., Fiske, S.T. (eds.), The Handbook of Social Psychology, pp. 193–281. McGraw-Hill, New York (1997) Google Scholar
- 8.Bickmore, T.W., Picard, R.W.: Establishing and maintaining long-term human–computer relationships. ACM Trans. Comput.–Hum. Interact. 12(2), 293–327 (2005) Google Scholar
- 9.Biddle, B.J.: Recent developments in role theory. Annu. Rev. Sociol. 12, 67–92 (1986) Google Scholar
- 10.Bigot, B., Ferrane, I., Pinquier, J., Andre-Obrecht, R.: Detecting individual role using features extracted from speaker diarization results. Multimedia Tools Appl. 1–23 (2011) Google Scholar
- 11.Bonaiuto, J., Thórisson, K.R.: Towards a neurocognitive model of realtime turntaking in face-to-face dialogue. In: Knoblich, G., Wachsmuth, I., Lenzen, M. (eds.), Embodied Communication in Humans and Machines. Oxford University Press, London (2008) Google Scholar
- 12.Bousmalis, K., Mehu, M., Pantic, M.: Spotting agreement and disagreement: A survey of nonverbal audiovisual cues and tools. In: Proceedings of the International Conference on Affective Computing and Intelligent Interfaces Workshops, vol. 2 (2009) Google Scholar
- 13.Bousmalis, K., Mehu, M., Pantic, M.: Agreement and disagreement: A survey of nonverbal audiovisual cues and tools. Image Vis. Comput. J. (2012) Google Scholar
- 14.Bousmalis, K., Morency, L., Pantic, M.: Modeling hidden dynamics of multimodal cues for spontaneous agreement and disagreement recognition. In: IEEE International Conference on Automatic Face and Gesture Recognition (2011) Google Scholar
- 15.Brunet, P.M., Charfuelan, M., Cowie, R., Schroeder, M., Donnan, H., Douglas-Cowie, E.: Detecting politeness and efficiency in a cooperative social interaction. In: International Conference on Spoken Language Processing (Interspeech), pp. 2542–2545 (2010) Google Scholar
- 16.Brunswik, E.: Perception and the Representative Design of Psychological Experiments. University of California Press, Berkeley (1956) Google Scholar
- 17.Buchanan, M.: The science of subtle signals. Strateg. Bus. 48, 68–77 (2007) Google Scholar
- 18.Burgoon, J.K., Le Poire, B.A.: Nonverbal cues and interpersonal judgments: Participant and observer perceptions of intimacy, dominance, composure, and formality. Commun. Monogr. 66(2), 105–124 (1999) Google Scholar
- 19.Byrne, D.: The Attraction Paradigm. Academic Press, New York (1971) Google Scholar
- 20.Cassell, J., Sullivan, J., Prevost, S., Churchill, E.: Embodied Conversational Agents. MIT Press, Cambridge (2000) Google Scholar
- 21.Cassell, J., Vilhjálmsson, H.H., Bickmore, T.W.: BEAT: The behavior expression animation toolkit. In: ACM International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’01), pp. 477–486 (2001) Google Scholar
- 22.Castelfranchi, C.: Social power: A missed point in DAI, MA and HCI. In: Demazeau, Y., Mueller, J.P. (eds.) Decentralized AI, pp. 49–62. North-Holland, Elsevier (1990) Google Scholar
- 23.Cavazza, M., de la Camara, R.S., Turunen, M.: How was your day?: A companion ECA. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1 – Volume 1. AAMAS ’10, pp. 1629–1630. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2010) Google Scholar
- 24.Cohen, P., Levesque, H.: Performatives in a rationally based speech act theory. In: Annual Meeting of the Association of Computational Linguistics, Pittsburgh, pp. 79–88 (1990) Google Scholar
- 25.Cohn, J., Schmidt, K.: The timing of facial motion in posed and spontaneous smiles. Int. J. Wavelets Multiresolut. Inf. Process. 2(2), 121–132 (2004) Google Scholar
- 26.Courgeon, M., Buisine, S., Martin, J.-C.: Impact of expressive wrinkles on perception of a virtual character’s facial expressions of emotions. In: Proceedings of the 9th International Conference on Intelligent Virtual Agents. IVA ’09, pp. 201–214. Springer, Berlin (2009) Google Scholar
- 27.de Gelder, B., Vroomen, J.: The perception of emotions by ear and by eye. Cogn. Emot. 14(3), 289–311 (2000) Google Scholar
- 28.de Jong, M., Theune, M., Hofs, D.H.W.: Politeness and alignment in dialogues with a virtual guide. In: International Conference on Autonomous Agents and Multiagent Systems, pp. 207–214 (2008) Google Scholar
- 29.de Melo, C., Gratch, J.: Expression of emotions using wrinkles, blushing, sweating and tears. In: International Conference on Intelligent Virtual Agents (2009) Google Scholar
- 30.Douglas-Cowie, E., Devillers, L., Martin, J.C., Cowie, R., Savvidou, S., Abrilian, S., Cox, C.: Multimodal databases of everyday emotion: Facing up to complexity. In: International Conference on Spoken Language Processing (Interspeech), pp. 813–816 (2005) Google Scholar
- 31.Duncan, S.: Some signals and rules for taking speaking turns in conversations. J. Pers. Soc. Psychol. 23(2), 283–292 (1972) Google Scholar
- 32.Eagle, N., Pentland, A.: Reality mining: sensing complex social signals. J. Pers. Ubiquitous Comput. 10(4), 255–268 (2006) Google Scholar
- 33.Efron, D.: Gesture and Environment. King’s Crown Press, New York (1941) Google Scholar
- 34.Eibl-Eibesfeldt, I.: Human Ethology. Aldine De Gruyter, New York (1989) Google Scholar
- 35.Ekman, P.: Are there basic emotions? Psychol. Rev. 99(3), 550–553 (1992) Google Scholar
- 36.Ekman, P.: Should we call it expression or communication? Innov. Soc. Sci. Res. 10(4), 333–344 (1997) MathSciNetGoogle Scholar
- 37.Ekman, P., Friesen, W.: The repertoire of nonverbal behavior: Categories, origins, usage and coding. Semiotica 1(1), 49–98 (1969) Google Scholar
- 38.Enquist, M.: Communication during aggressive interactions with particular reference to variation in choice of behaviour. Anim. Behav. 33(4), 1152–1161 (1985) Google Scholar
- 39.Eyben, F., Wollmer, M., Valstar, M.F., Gunes, H., Schuller, B., Pantic, M.: String-based audiovisual fusion of behavioural events for the assessment of dimensional affect. In: IEEE International Conference on Automatic Face and Gesture Recognition (FG’11) (2011) Google Scholar
- 40.Festinger, L., Schachter, S., Back, K.: Social Pressures in Informal Groups: A Study of Human Factors in Housing. Stanford University Press, Palo Alto (1950) Google Scholar
- 41.Fishbein, M., Ajzen, I.: Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Addison-Wesley, Reading (1975) Google Scholar
- 42.Foster, M.E.: Comparing rule-based and data-driven selection of facial displays. In: Proceedings of the Workshop on Embodied Language Processing, pp. 1–8 (2007) Google Scholar
- 43.Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The vocabulary problem in human-system communication. Commun. ACM 30(11), 964–971 (1987) Google Scholar
- 44.Gatica-Perez, D.: Automatic nonverbal analysis of social interaction in small groups: a review. Image Vis. Comput. 27(12), 1775–1787 (2009) Google Scholar
- 45.Gladwell, M.: Blink: The Power of Thinking Without Thinking. Little, Brown and Co., New York (2005) Google Scholar
- 46.Gratch, J., Wang, N., Gerten, J., Fast, E., Duffy, R.: Creating rapport with virtual agents. In: International Conference on Intelligent Virtual Agents, pp. 125–138 (2007) Google Scholar
- 47.Grice, H.P.: Meaning. Philosoph. Rev. 66, 377–388 (1957) Google Scholar
- 48.Guilford, T., Dawkins, M.S.: What are conventional signals? Anim. Behav. 49, 1689–1695 (1995) Google Scholar
- 49.Gunes, H., Pantic, M.: Automatic, dimensional and continuous emotion recognition. Int. J. Synthet. Emot. 1(1), 68–99 (2010) Google Scholar
- 50.Gunes, H., Pantic, M.: Dimensional emotion prediction from spontaneous head gestures for interaction with sensitive artificial listeners. In: International Conference on Intelligent Virtual Agents (2010) Google Scholar
- 51.Gunes, H., Piccardi, M.: Assessing facial beauty through proportion analysis by image processing and supervised learning. Int. J. Human–Comput. Stud. 64, 1184–1199 (2006) Google Scholar
- 52.Hadar, U., Steiner, T., Rose, F.C.: Head movement during listening turns in conversation. J. Nonverbal Behav. 9(4), 214–228 (1985) Google Scholar
- 53.Hall, E.T.: The Silent Language. Doubleday, New York (1959) Google Scholar
- 54.Hasson, O.: Cheating signals. J. Theor. Biol. 167, 223–238 (1994) Google Scholar
- 55.Heylen, D.: Challenges ahead: Head movements and other social acts in conversations. In: International Conference on Intelligent Virtual Agents (2005) Google Scholar
- 56.Heylen, D., Bevacqua, E., Pelachaud, C., Poggi, I., Gratch, J.: Generating Listener Behaviour. Springer, Berlin (2011) Google Scholar
- 57.Hinde, R.: The concept of function. In: Baerends, G., Manning, A. (eds.), Function and Evolution in Behaviour, pp. 3–15. Clarendon Press, Oxford (1975) Google Scholar
- 58.Homans, G.C.: Social Behavior: Its Elementary Forms. Harcourt Brace, Orlando (1961) Google Scholar
- 59.Hung, H., Gatica-Perez, D.: Estimating cohesion in small groups using audio-visual nonverbal behavior. IEEE Trans. Multimedia, Special Issue on Multimodal Affective Interaction 12(6), 563–575 (2010) Google Scholar
- 60.Hung, H., Jayagopi, D., Yeo, C., Friedland, G., Ba, S., Odobez, J.M., Ramchandran, K., Mirghafori, N., Gatica-Perez, D.: Using audio and video features to classify the most dominant person in a group meeting. In: International Conference Multimedia (2007) Google Scholar
- 61.Hyman, S.E.: A new image for fear and emotion. Nature 393, 417–418 (1998) Google Scholar
- 62.Isbister, K., Nass, C.: Consistency of personality in interactive characters: Verbal cues, non-verbal cues, and user characteristics. Int. J. Human–Comput. Stud. 53, 251–267 (2000) Google Scholar
- 63.Jayagopi, D., Hung, H., Yeo, C., Gatica-Perez, D.: Modeling dominance in group conversations from non-verbal activity cues. IEEE Trans. Audio, Speech Language Process. 17(3), 501–513 (2009) Google Scholar
- 64.Jayagopi, D., Kim, T., Pentland, A., Gatica-Perez, D.: Recognizing conversational context in group interaction using privacy-sensitive mobile sensors. In: ACM International Conference on Mobile and Ubiquitous Multimedia (2010) Google Scholar
- 65.Jonsdottir, G.R., Thorisson, K.R., Nivel, E.: Learning smooth, human-like turntaking in realtime dialogue. In: Proceedings of the 8th international conference on Intelligent Virtual Agents, pp. 162–175. Springer, Berlin (2008) Google Scholar
- 66.Kagian, A., Dror, G., Leyvand, T., Meilijson, I., Cohen-Or, D., Ruppin, E.: A machine learning predictor of facial attractiveness revealing human-like psychophysical biases. Vis. Res. 48, 235–243 (2008) Google Scholar
- 67.Kelley, H.H., Thibaut, J.: Interpersonal Relations: A Theory of Interdependence. Wiley, New York (1978) Google Scholar
- 68.Keltner, D.: Signs of appeasement: Evidence for the distinct displays of embarrassment, amusement and shame. J. Pers. Soc. Psychol. 68(3), 441–454 (1995) Google Scholar
- 69.Knapp, M.L., Hall, J.A.: Nonverbal Communication in Human Interaction. Harcourt Brace, New York (1972) Google Scholar
- 70.Koay, K.L., Syrdal, D.S., Walters, M.L., Dautenhahn, K.: Five weeks in the robot house. In: International Conference on Advances in Computer–Human Interactions (2009) Google Scholar
- 71.Kopp, S., Stocksmeier, T., Gibbon, D.: Incremental multimodal feedback for conversational agents. In: International Conference on Intelligent Virtual Agents (2007) Google Scholar
- 72.Leite, I., Mascarenhas, S., Pereira, A., Martinho, C., Prada, R., Paiva, A.: Why can’t we be friends? – an empathic game companion for long-term interaction. In: International Conference on Intelligent Virtual Agents (2010) Google Scholar
- 73.Lewis, R.L.: Beyond dominance: the importance of leverage. Q. Rev. Biol. 77(2), 149–164 (2002) Google Scholar
- 74.Mairesse, F., Walker, M.A., Mehl, M.R., Moore, R.K.: Using linguistic cues for the automatic recognition of personality in conversation and text. J. Artif. Intell. Res. 30, 457–500 (2007) zbMATHGoogle Scholar
- 75.Marsella, S., Gratch, J., Petta, P.: Computational Models of Emotions. Oxford University Press, Oxford (2010) Google Scholar
- 76.Martin, J., Abrilian, S., Devillers, L., Lamolle, M., Mancini, M., Pelachaud, C.: Levels of representation in the annotation of emotion for the specification of expressivity in ECAs. In: International Conference on Intelligent Virtual Agents (2005) Google Scholar
- 77.Maynard-Smith, J., Harper, D.G.: Animal signals: Models and terminology. J. Theor. Biol. 177, 305–311 (1995) Google Scholar
- 78.Maynard-Smith, J., Harper, D.G.: Animal Signals. Oxford University Press, Oxford (2003) Google Scholar
- 79.McCowan, I., Gatica-Perez, D., Bengio, S., Lathoud, G., Barnard, M., Zhang, D.: Automatic analysis of multimodal group actions in meetings. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 305–317 (2005) Google Scholar
- 80.Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104, 90–126 (2006) Google Scholar
- 81.Mori, M.: The uncanny valley. Energy 7, 33–35 (1970) Google Scholar
- 82.Nicolaou, M., Gunes, H., Pantic, M.: Output-associative RVM regression for dimensional and continuous emotion prediction. In: IEEE International Conference on Automatic Face and Gesture Recognition (2011) Google Scholar
- 83.Och, M., Niewiadomski, R., Pelachaud, C.: Expressions of empathy in ECAs. In: International Conference on Intelligent Virtual Agents (2008) Google Scholar
- 84.Ochs, M., Niewiadomski, R., Pelachaud, C.: How a virtual agent should smile? morphological and dynamic characteristics of virtual agent’s smiles. In: International Conference on Intelligent Virtual Agents (IVA’10) (2010) Google Scholar
- 85.Oikonomopoulos, A., Patras, I., Pantic, M.: Discriminative space–time voting for joint recognition and localization of actions. In: International ACM Conference on Multimedia, Workshops (ACM-MM-W’10) (2010) Google Scholar
- 86.Olguin, D., Gloor, P., Pentland, A.: Capturing individual and group behavior with wearable sensor. In: AAAI Spring Symposium (2009) Google Scholar
- 87.Owren, M.J., Bachorowski, J.A.: Reconsidering the evolution of nonlinguistic communication: The case of laughter. J. Nonverbal Behav. 27(3), 183–200 (2003) Google Scholar
- 88.Pantic, M.: Machine analysis of facial behaviour: Naturalistic and dynamic behaviour. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 364, 3505–3513 (2009) Google Scholar
- 89.Pantic, M., Pentland, A., Nijholt, A., Huang, T.: Human computing and machine understanding of human behavior: A survey. LNAI 4451, 47–71 (2007) Google Scholar
- 90.Pantic, M., Pentland, A., Nijholt, A., Huang, T.: Human-centred intelligent human–computer interaction (HCI2): How far are we from attaining it? Int. J. Auton. Adapt. Commun. Syst. (IJAACS) 1(2), 168–187 (2008) Google Scholar
- 91.Partan, S.R., Marter, P.: Communication goes multimodal. Science 283(5406), 1272–1273 (1999) Google Scholar
- 92.Peirce, C.C.: Collected Chapters. Cambridge University Press, Cambridge (1931–1935) Google Scholar
- 93.Pelachaud, C., Carofiglio, V., Carolis, B.D., de Rosis, F., Poggi, I.: Embodied contextual agent in information delivering application. In: International Conference on Autonomous Agents and Multiagent Systems, pp. 758–765 (2002) Google Scholar
- 94.Pentland, A.: Social dynamics: Signals and behavior. In: International Conference Developmental Learning (2004) Google Scholar
- 95.Pentland, A.: Socially aware computation and communication. IEEE Comput. 38(3), 33–40 (2005) Google Scholar
- 96.Pentland, A.: Social signal processing. IEEE Signal Process. Mag. 24(4), 108–111 (2007) Google Scholar
- 97.Pianesi, F., Mana, N., Cappelletti, A.: Multimodal recognition of personality traits in social interactions. In: International Conference on Multimodal Interfaces, pp. 53–60 (2008) Google Scholar
- 98.Pianesi, F., Zancanaro, M., Not, E., Leonardi, C., Falcon, V., Lepri, B.: Multimodal support to group dynamics. Pers. Ubiquitous Comput. 12(3), 181–195 (2008) Google Scholar
- 99.Poggi, I.: Mind, Hands, Face and Body: Goal and Belief View of Multimodal Communication. Weidler, Berlin (2007) Google Scholar
- 100.Poggi, I., D’Errico, F.: Cognitive modelling of human social signals. In: Social Signal Processing Workshop, in Conjunction with International Conference on Multimedia (2010) Google Scholar
- 101.Raducanu, B., Gatica-Perez, D.: Inferring competitive role patterns in reality TV show through nonverbal analysis. Multimedia Tools Appl. (2010) Google Scholar
- 102.Rendall, D., Owren, M.J., Ryan, M.J.: What do animal signals mean? Anim. Behav. 78(2), 233–240 (2009) Google Scholar
- 103.Richmond, V.P., McCroskey, J.C.: Nonverbal Behaviors in Interpersonal Relations. Allyn & Bacon, Needham Heights (1995) Google Scholar
- 104.Russell, J.A., Bachorowski, J.A., Fernandez-Dols, J.M.: Facial and vocal expressions of emotion. Annu. Rev. Psychol. 54(1), 329–349 (2003) Google Scholar
- 105.Ruttkay, Z., Pelachaud, C.: From Brows to Trust: Evaluating Embodied Conversational Agents. Kluwer Academic, Norwell (2004) zbMATHGoogle Scholar
- 106.Sacks, H., Schegloff, E.A., Jefferson, G.: A simplest systematics for the organization of turn taking for conversation. Language 50(4), 696–735 (1974) Google Scholar
- 107.Salamin, H., Favre, S., Vinciarelli, A.: Automatic role recognition in multiparty recordings: Using social affiliation networks for feature extraction. IEEE Trans. Multimedia 11(7), 1373–1380 (2009) Google Scholar
- 108.Scheflen, A.E.: The significance of posture in communication systems. Psychiatry 27, 316–331 (1964) Google Scholar
- 109.Scherer, K.R.: Personality inference from voice quality: The loud voice of extroversion. Eur. J. Soc. Psychol. 8(4), 467–487 (1978) Google Scholar
- 110.Scherer, K.R.: What does facial expression express? In: Strongman, K.T. (ed.) International Review of Studies of Emotion, vol. 2, pp. 139–165. Wiley, New York (1992) Google Scholar
- 111.Schmid, K., Marx, D., Samal, A.: Computation of face attractiveness index based on neoclassic canons, symmetry and golden ratio. Pattern Recogn. 41, 2710–2717 (2008) Google Scholar
- 112.Schröder, M.: Expressive Speech Synthesis: Past, Present, and Possible Futures. In: Tao, J., Tan, T. (eds.) Affective Information Processing, pp. 111–126. Springer, Berlin? (2009) Google Scholar
- 113.Segerstrale, U., Molnar, P.: Nonverbal Communication: Where Nature Meets Culture. Lawrence Erlbaum Associates, Lawrence (1997) Google Scholar
- 114.Shannon, C.E., Weaver, W.: The Mathematical Theory of Information. University of Illinois Press, Champaign (1949) Google Scholar
- 115.ter Maat, M., Heylen, D.: Turn management or impressions management? In: International Conference on Intelligent Virtual Agents, pp. 467–473 (2009) Google Scholar
- 116.Thorndike, E.L.: Intelligence and its use. Harper’s Mag. 140, 227–235 (1920) Google Scholar
- 117.Tomkins, S.S.: Consiousness, Imagery and Affect vol. 1. Springer, Berlin (1962) Google Scholar
- 118.Triandis, H.C.: Culture and Social Behavior. McGraw-Hill, New York (1994) Google Scholar
- 119.Trouvain, J., Schröder, M.: How (not) to add laughter to synthetic speech. Lect. Notes Comput. Sci. 3068, 229–232 (2004) Google Scholar
- 120.Valstar, M.F., Gunes, H., Pantic, M.: How to distinguish posed from spontaneous smiles using geometric features. In: International Conference Multimodal Interfaces, pp. 38–45 (2007) Google Scholar
- 121.Valstar, M.F., Pantic, M., Ambadar, Z., Cohn, J.F.: Spontaneous vs. posed facial behaviour: Automatic analysis of brow actions. In: International Conference Multimodal Interfaces, pp. 162–170 (2006) Google Scholar
- 122.Verhencamp, S.L.: Handicap, Index, and Conventional Signal Elements of Bird Song. In: Edpmark, Y., Amundsen, T., Rosenqvist, G. (eds.) Animal Signals: Signalling and Signal Design in Animal Communication, pp. 277–300. Tapir Academic Press, Trondheim (2000) Google Scholar
- 123.Vinciarelli, A.: Capturing order in social interactions. IEEE Signal Process. Mag. 26(5), 133–137 (2009) Google Scholar
- 124.Vinciarelli, A., Pantic, M., Bourlard, H., Pentland, A.: Social signal processing: State-of-the-art and future perspectives of an emerging domain. In: International Conference Multimedia, pp. 1061–1070 (2008) Google Scholar
- 125.Vinciarelli, A., Pantic, M., Bourlard, H.: Social signal processing: Survey of an emerging domain. Image Vis. Comput. 27(12), 1743–1759 (2009) Google Scholar
- 126.Vinciarelli, A., Pantic, M., Heylen, D., Pelachaud, C., Poggi, I., D’Errico, F., Schröder, M.: Bridging the gap between social animal and unsocial machine: A survey of social signal processing. IEEE Trans. Affect. Comput. (2012, in press) Google Scholar
- 127.Wang, N., Johnson, W.L., Rizzo, P., Shaw, E., Mayer, R.E.: Experimental evaluation of polite interaction tactics for pedagogical agents. In: International Conference Intelligent User Interfaces, pp. 12–19 (2005) Google Scholar
- 128.Weiser, M.: The computer for the 21st century. Sci. Am. Special Issue on Communications, Computers, and Networks 265(3), 95–104 (1991) Google Scholar
- 129.Whitehill, J., Movellan, J.: Personalized facial attractiveness prediction. In: IEEE International Conference on Automatic Face and Gesture Recognition (2008) Google Scholar
- 130.Woodworth, R.S.: Dynamics of Behavior. Holt, New York (1961) Google Scholar
- 131.Zahavi, A.: Mate selection: selection for a handicap. J. Theor. Biol. 53, 205–214 (1975) Google Scholar
- 132.Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.H.: A survey of affect recognition methods: Audio, visual and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009) Google Scholar