Advertisement

Decoupling Control of Multivariable Processes

  • Tao LiuEmail author
  • Furong Gao
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

For multivariable process control, two-input-two-output (TITO) processes are mostly established for the convenience of control system design and system operation. Many industrial processes with higher dimensions are practically divided as several TITO subsystems for operation (Luyben 1990; Ogunnaike and Ray 1994; Seborg et~al. 2004).

References

  1. Alevisakis G, Seborg DE (1973) An extension of the Smith predictor to multivariable linear systems containing time delays. Int J Control 3(17):541–557CrossRefGoogle Scholar
  2. Åström KJ, Hägglund T (1995) PID controller: theory, design, and tuning, 2nd edn. ISA Society of America, Research Triangle ParkGoogle Scholar
  3. Åström KJ, Johansson KH, Wang QG (2002) Design of decoupled PI controllers for two-by-two systems. IEE Process Control Theory Appl 149(1):74–81CrossRefGoogle Scholar
  4. Chen D, Seborg DE (2003) Design of decentralized PI control systems based on Nyquist stability analysis. J Process Control 13(1):27–39CrossRefGoogle Scholar
  5. Desbiens A, Pomerleau A, Hodouin D (1996) Frequency based tuning of SISO controllers for two-by-two processes. IEE Process Control Theory Appl 143(1):49–56MathSciNetzbMATHCrossRefGoogle Scholar
  6. Gilbert AF, Yousef A, Natarajan K, Deighton S (2003) Tuning of PI controllers with one-way decoupling in 2 × 2 MIMO systems based on finite frequency response data. J Process Control 13(6):553–567CrossRefGoogle Scholar
  7. Halevi Y, Palmor ZJ, Efrati T (1997) Automatic tuning of decentralized PID controllers for MIMO processes. J Process Control 7(2):119–128CrossRefGoogle Scholar
  8. Holt BR, Morari M (1985) Design of resilient processing plants-V. The effect of deadtime on dynamic resilience. Chem Eng Sci 40(7):1229–1237CrossRefGoogle Scholar
  9. Huang HP, Lin FY (2006) Decoupling multivariable control with two degrees of freedom. Ind Eng Chem Res 45(9):3161–3173MathSciNetCrossRefGoogle Scholar
  10. Huang HP, Jeng JC, Chiang CH, Pan W (2003) A direct method for multi-loop PI/PID controller design. J Process Control 13(8):769–786CrossRefGoogle Scholar
  11. Jerome NF, Ray WH (1986) High-performance multivariable control strategies for systems having time delays. AICHE J 32(6):914–931CrossRefGoogle Scholar
  12. Jerome NF, Ray WH (1992) Model-predictive control of linear multivariable systems having time delays and right-half-plane zeros. Chem Eng Sci 47(4):763–785CrossRefGoogle Scholar
  13. Lee J, Kim DH, Edgar TF (2005) Static decouplers for control of multivariable processes. AICHE J 51(10):2712–2720CrossRefGoogle Scholar
  14. Limebeer DJN, Kasenally EM, Perkins JD (1993) On the design of robust two degree of freedom controllers. Automatica 29(1):157–168MathSciNetzbMATHCrossRefGoogle Scholar
  15. Liu T, Zhang W, Gu DY (2005) Analytical two-degree-of-freedom tuning design for open-loop unstable processes with time delay. J Process Control 15:559–572CrossRefGoogle Scholar
  16. Liu T, Zhang W, Gu DY (2006) Analytical design of decoupling internal model control (IMC) scheme for two-input-two-output (TITO) processes with time delays. Ind Eng Chem Res 45(9):3149–3160CrossRefGoogle Scholar
  17. Liu T, Zhang W, Gao F (2007a) Analytical decoupling control strategy using a unity feedback control structure for MIMO processes with time delays. J Process Control 17(2):173–186CrossRefGoogle Scholar
  18. Liu T, Zhang W, Gao F (2007b) Analytical two-degrees-of-freedom (2-DOF) decoupling control scheme for multiple-input-multiple-output (MIMO) processes with time delays. Ind Eng Chem Res 46(20):6546–6557MathSciNetCrossRefGoogle Scholar
  19. Lundström P, Skogestad S (1999) Two-degree-of-freedom controller design for an ill-conditioned distillation process using μ-synthesis. IEEE Trans Autom Control 7(1):12–21Google Scholar
  20. Luyben WL (1990) Process modeling, simulation, and control for chemical engineers. McGraw Hill, New YorkGoogle Scholar
  21. Morari M, Zafiriou E (1989) Robust process control. Prentice Hall, Englewood CliffGoogle Scholar
  22. Ogunnaike BA, Ray WH (1979) Multivariable controller design for linear systems having multiple time delays. AICHE J 25(6):1043–1056CrossRefGoogle Scholar
  23. Ogunnaike BA, Ray WH (1994) Process dynamics, modeling, and control. Oxford University Press, New YorkGoogle Scholar
  24. Palmor ZJ, Halevi Y, Krasney N (1995) Automatic tuning of decentralized PID controllers for TITO processes. Automatica 31(7):1001–1010zbMATHCrossRefGoogle Scholar
  25. Perng MH, Ju JS (1994) Optimally decoupled robust control MIMO plants with multiple delays. IEE Process Control Theory Appl 141(1):49–56Google Scholar
  26. Pomerleau D, Pomerleau A (2001) Guide lines for the tuning and the evaluation of decentralized and decoupling controllers for processes with recirculation. ISA Trans 40(4):341–351CrossRefGoogle Scholar
  27. Prempain E, Bergeon B (1998) A multivariable two-degree-of-freedom control methodology. Automatica 34(12):1601–1606zbMATHCrossRefGoogle Scholar
  28. Richard YC, Michael GS (1998) Robust control toolbox user’s guide, 3rd edn. The MathWorks Inc., NatickGoogle Scholar
  29. Seborg DE, Edgar TF, Mellichamp DA (2004) Process dynamics and control, 2nd edn. Wiley, HobokenGoogle Scholar
  30. Shinskey FG (1996) Process control system, 4th edn. McGraw Hill, New YorkGoogle Scholar
  31. Shiu SJ, Hwang SH (1998) Sequential design method for multivariable decoupling and multiloop PID controllers. Ind Eng Chem Res 37(1):107–119CrossRefGoogle Scholar
  32. Skogestad S, Postlethwaite I (2005) Multivariable feedback control: analysis and design, 2nd edn. Wiley, ChichesterGoogle Scholar
  33. Toh WH, Rangaiah GP (2002) A methodology for autotuning of multivariable systems. Ind Eng Chem Res 41(18):4605–4615CrossRefGoogle Scholar
  34. Tyreus BD (1979) Multivariable control system design for an industrial distillation column. Ind Eng Chem Process Des Dev 18(2):177–182CrossRefGoogle Scholar
  35. Waller M, Waller JB, Waller KV (2003) Decoupling revisited. Ind Eng Chem Res 42(20):4575–4577CrossRefGoogle Scholar
  36. Wang QG, Huang B, Guo X (2000a) Auto-tuning of TITO decoupling controllers from step tests. ISA Trans 39(4):407–418CrossRefGoogle Scholar
  37. Wang QG, Zou B, Zhang Y (2000b) Decoupling Smith predictor design for multivariable systems with multiple time delays. Chem Eng Res Des Trans Inst Chem Eng Part A 78(4):565–572CrossRefGoogle Scholar
  38. Wang QG, Zhang Y, Chiu MS (2003) Non-interacting control design for multivariable industrial processes. J Process Control 13(3):253–265CrossRefGoogle Scholar
  39. Watanabe K, Ishiyama Y, Ito M (1983) Modified Smith predictor control for multivariable systems with delays and unmeasurable step disturbances. Int J Control 37(5):959–973zbMATHCrossRefGoogle Scholar
  40. Wood RK, Berry MW (1973) Terminal composition control of binary distillation column. Chem Eng Sci 28(10):1707–1717Google Scholar
  41. Zhang Y, Wang QG, Åström KJ (2002) Dominant pole placement for multi-loop control systems. Automatica 38(7):1213–1220zbMATHCrossRefGoogle Scholar
  42. Zhang WD, Gu DY, Wang W, Xu X (2004) Quantitative performance design of a modified Smith predictor for unstable processes with time delay. Ind Eng Chem Res 43:56–62CrossRefGoogle Scholar
  43. Zhou KM, Doyle JC, Glover K (1996) Robust and optimal control. Prentice Hall, Englewood CliffzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.RWTH Aachen UniversityAachenGermany
  2. 2.Hong Kong University of Science and TechnologyKowloonHong Kong SAR

Personalised recommendations