Skip to main content
  • 3159 Accesses

Abstract

In this review we bring together some of our recent work from the angle of the diversified RBF topologies, including three different topologies; (i) the RBF network with tunable nodes; (ii) the Box-Cox output transformation based RBF network (Box-Cox RBF); and (iii) the RBF network with boundary value constraints (BVC-RBF). We show that the modified topologies have some advantages over the conventional RBF topology for specific problems. For each modified topology, the model construction algorithms have been developed. These proposed RBF topologies are respectively aimed at enhancing the modelling capabilities of; (i)flexible basis function shaping for improved model generalization with the minimal model;(ii) effectively handling some dynamical processes in which the model residuals exhibit heteroscedasticity; and (iii) achieving automatic constraints satisfaction so as to incorporate deterministic prior knowledge with ease. It is shown that it is advantageous that the linear learning algorithms, e.g. the orthogonal forward selection (OFS) algorithm based leave-one-out (LOO) criteria, are still applicable as part of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong, X., Mitchell, R.J., Chen, S., Harris, C.J., Li, K., Irwin, G.W.: Model selection approaches for nonlinear system identification: a review. Int. J. Syst. Sci. 39(10), 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Harris, C.J., Hong, X., Gan, Q.: Adaptive Modelling, Estimation and Fusion from Data: A Neurofuzzy Approach. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  3. Brown, M., Harris, C.J.: Neurofuzzy Adaptive Modelling and Control. Prentice Hall, Upper Saddle River (1994)

    Google Scholar 

  4. Ruano, A.E.: Intelligent Control Systems using Computational Intelligence Techniques. IEE Publishing, New York (2005)

    Book  MATH  Google Scholar 

  5. Murray-Smith, R., Johansen, T.A.: Multiple Model Approaches to Modelling and Control. Taylor and Francis, London (1997)

    Google Scholar 

  6. Fabri, S.G., Kadirkamanathan, V.: Functional Adaptive Control: An Intelligent Systems Approach. Springer, Berlin (2001)

    MATH  Google Scholar 

  7. Leonard, J.A., Kramer, M.A.: Radial basis function networks for classifying process faults. IEEE Control Syst. Mag. 11(3), 31–38 (1991)

    Article  Google Scholar 

  8. Caiti, A., Parisini, T.: Mapping ocean sediments by RBF networks. IEEE J. Ocean. Eng. 19(4), 577–582 (1994)

    Article  Google Scholar 

  9. Li, Y., Sundararajan, N., Saratchandran, P., Wang, Z.: Robust neuro-H∞ controller design for aircraft auto-landing. IEEE Trans. Aerosp. Electron. Syst. 40(1), 158–167 (2004)

    Article  Google Scholar 

  10. Ng, S.X., Yee, M.S., Hanzo, L.: Coded modulation assisted radial basis function aided turbo equalization for dispersive Rayleigh-fading channels. IEEE Trans. Wirel. Commun. 3(6), 2198–2206 (2004)

    Article  Google Scholar 

  11. Stone, M.: Cross validatory choice and assessment of statistical predictions. J. R. Stat. Soc. B 36, 117–147 (1974)

    Google Scholar 

  12. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control AC-19, 716–723 (1974)

    Article  MathSciNet  Google Scholar 

  13. Chen, S., Billings, S.A., Luo, W.: Orthogonal least squares methods and their applications to non-linear system identification. Int. J. Control 50, 1873–1896 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Korenberg, M.J.: Identifying nonlinear difference equation and functional expansion representations: the fast orthogonal algorithm. Ann. Biomed. Eng. 16, 123–142 (1988)

    Article  Google Scholar 

  15. Wang, L., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 5, 807–814 (1992)

    Article  Google Scholar 

  16. Hong, X., Harris, C.J.: Neurofuzzy design and model construction of nonlinear dynamical processes from data. IEE Proc., Control Theory Appl. 148(6), 530–538 (2001)

    Article  Google Scholar 

  17. Zhang, Q.: Using wavelets network in nonparametric estimation. IEEE Trans. Neural Netw. 8(2), 1997 (1993)

    Google Scholar 

  18. Billings, S.A., Wei, H.L.: The wavelet-narmax representation: a hybrid model structure combining polynomial models with multiresolution wavelet decompositions. Int. J. Syst. Sci. 36(3), 137–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hong, X., Sharkey, P.M., Warwick, K.: Automatic nonlinear predictive model construction using forward regression and the PRESS statistic. IEE Proc., Control Theory Appl. 150(3), 245–254 (2003)

    Article  Google Scholar 

  20. Chen, S., Hong, X., Harris, C.J.: Construction of tunable radial basis function networks using orthogonal forward selection. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(2), 457–466 (2009)

    Article  MathSciNet  Google Scholar 

  21. Hong, X.: Modified radial basisfunction neural networks using output transformation. IEE Proc., Control Theory Appl. 1(1), 1–8 (2007)

    Article  MATH  Google Scholar 

  22. Hong, X., Chen, S.: A new RBF neural network with boundary value constraints. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(1), 298–303 (2009)

    Article  Google Scholar 

  23. Vapnik, V.: The Nature of Statictical Learning Theory. Springer, New York (1995)

    Google Scholar 

  24. Gunn, S.R.: Support vector machine for classification and regression. Technical Report, ISIS Research Group, Dept of Electronics and Computer Science, University of Southampton (1998)

    Google Scholar 

  25. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  26. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Chen, S., Hong, X., Harris, C.J., Sharkey, P.M.: Sparse modelling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(2), 898–911 (2004)

    Article  Google Scholar 

  28. Myers, R.H.: Classical and Modern Regression with Applications, 2nd edn. PWS-KENT, Boston (1990)

    Google Scholar 

  29. Chen, S., Wang, X.X., Harris, C.J.: Experiments with repeating weighted boosting search for optimization signal processing applications. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 35(4), 682–693 (2005)

    Article  Google Scholar 

  30. [online]: Available: http://www.ics.uci.edu/~mlearn/MLRepository.html

  31. Chen, S., Hong, X., Luk, B.L., Harris, C.J.: Nonlinear system identification using particle swarm optimization tuned radial basis function models. Int. J. Bio-Inspired Comput. 1(4), 246–258 (2009)

    Article  Google Scholar 

  32. Box, G.E.P., Cox, D.R.: An analysis of transformation. J. R. Stat. Soc. B 26(2), 211–252 (1964)

    MathSciNet  MATH  Google Scholar 

  33. Carroll, R.J., Ruppert, D.: Transformation and Weighting in Regression. Chapman and Hall, London (1988)

    MATH  Google Scholar 

  34. Ding, A.A., He, X.: Backpropagation of pseudoerrors: neural networks that are adaptive to heterogeneous noise. IEEE Trans. Neural Netw. 14(2), 253–262 (2003)

    Article  Google Scholar 

  35. Chen, S., Wu, Y., Luk, B.L.: Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks. IEEE Trans. Neural Netw. 10, 1239–1243 (1999)

    Article  Google Scholar 

  36. Hong, X., Harris, C.J.: Nonlinear model structure design and construction using orthogonal least squares and D-optimality design. IEEE Trans. Neural Netw. 13(5), 1245–1250 (2002)

    Article  Google Scholar 

  37. Chen, S.: Locally regularised orthogonal least squares algorithm for the construction of sparse kernel regression models. In: Proceedings of 6th Int. Conf. Signal Processing, Beijing, China, pp. 1229–1232 (2002)

    Google Scholar 

  38. Powell, M.J.D.: Problems related to unconstrained optimization. In: Murray, W. (ed.) Numerical Methods for Unconstrained Optimization, pp. 29–55. Academic Press, London (1972)

    Google Scholar 

  39. Hipel, K.W., Mcleod, A.I.: Time Series Modelling of Water Resources and Environmental Systems. Elsevier, Amsterdam (1994)

    Google Scholar 

  40. Atkinson, A.C., Donev, A.N.: Optimum Experimental Designs. Clarendon Press, Oxford (1992)

    MATH  Google Scholar 

  41. Hong, X., Harris, C.J.: Experimental design and model construction algorithms for radial basis function networks. Int. J. Syst. Sci. 34(14–15), 733–745 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Hong, X., Chen, S., Harris, C.J. (2012). Construction of Radial Basis Function Networks with Diversified Topologies. In: Wang, L., Garnier, H. (eds) System Identification, Environmental Modelling, and Control System Design. Springer, London. https://doi.org/10.1007/978-0-85729-974-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-974-1_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-973-4

  • Online ISBN: 978-0-85729-974-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics