Skip to main content

Morphable Models of Faces

  • Chapter
Handbook of Face Recognition

Abstract

In this chapter, we present the Morphable Model, a three-dimensional (3D) representation that enables the accurate modeling of any illumination and pose as well as the separation of these variations from the rest (identity and expression). The Morphable Model is a generative model consisting of a linear 3D shape and appearance model plus an imaging model, which maps the 3D surface onto an image. The 3D shape and appearance are modeled by taking linear combinations of a training set of example faces. We show that linear combinations yield a realistic face only if the set of example faces is in correspondence. A good generative model should accurately distinguish faces from non faces. This is encoded in the probability distribution over the model parameters, which assigns a high probability to faces and a low probability to non faces. The distribution is learned together with the shape and appearance space from the training data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration. In: CVPR07, June 2007

    Google Scholar 

  2. Amberg, B., Knothe, R., Vetter, T.: Expression invariant 3D face recognition with a morphable model. In: Automatic Face and Gesture Recognition (2008)

    Google Scholar 

  3. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Pang, H.-C., Davis, J.: The correlated correspondence algorithm for unsupervised surface registration. In: NIPS (2004)

    Google Scholar 

  4. Beymer, D., Poggio, T.: Image representations for visual learning. Science 272, 1905–1909 (1996)

    Article  Google Scholar 

  5. Beymer, D., Shashua, A., Poggio, T.: Example based image analysis and synthesis. Technical report, Artificial Intelligence Laboratory, MIT, Cambridge, MA (1993)

    Google Scholar 

  6. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D-faces. In: SIGGRAPH 99 (1999)

    Google Scholar 

  7. Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. PAMI (2003)

    Google Scholar 

  8. Blanz, V., Vetter, T.: Generating frontal views from single, non-frontal images. In: Face Recognition Vendor Test 2002: Technical Appendix O. NISTIR 6965. National Institute of Standards and Technology, Gaithersburg (2003)

    Google Scholar 

  9. Blanz, V., Romdhani, S., Vetter, T.: Face identification across different poses and illuminations with a 3D morphable model. In: Automatic Face and Gesture Recognition (2002)

    Google Scholar 

  10. Blanz, V., Basso, C., Poggio, T., Vetter, T.: Reanimating faces in images and video. In: EuroGraphics (2003)

    Google Scholar 

  11. Blanz, V., Scherbaum, K., Seidel, H.-P.: Fitting a morphable model to 3D scans of faces. In: Proc. of Int. Conf. on Computer Vision ICCV (2007)

    Google Scholar 

  12. Brand, M.: Morphable 3D models from video. In: CVPR (2001)

    Google Scholar 

  13. Breuer, P., Kim, K.I., Kienzle, W., Schölkopf, B., Blanz, V.: Automatic 3D face reconstruction from single images or video. In: Automatic Face and Gesture Recognition (2008)

    Google Scholar 

  14. Chang, K.I., Bowyer, K.W., Flynn, P.F.: An evaluation of multimodal 2D+3D face biometrics. In: PAMI (2005)

    Google Scholar 

  15. Craw, I., Cameron, P.: Parameterizing images for recognition and reconstruction. In: Proc. BMVC (1991)

    Google Scholar 

  16. Deckelnick, K., Dziuk, G., Elliott, C.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dedner, A., Lüthi, M., Albrecht, T., Vetter, T.: Curvature guided level set registration using adaptive finite elements. In: DAGM (2007)

    Google Scholar 

  18. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  19. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  20. Edwards, G., Taylor, C., Cootes, T.: Interpreting face images using active appearance models. In: Automatic Face and Gesture Recognition (1998)

    Google Scholar 

  21. Foley, J., van Dam, A., Feiner, S., Hughes, J.: Computer Graphics: Principles and Practice. Addison-Wesley, Reading (1996)

    MATH  Google Scholar 

  22. Gu, L., Kanade, T.: 3D alignment of face in a single image. In: CVPR (2006)

    Google Scholar 

  23. Hallinan, P.: A deformable model for the recognition of human faces under arbitrary illumination. Ph.D. thesis, Harvard University (1995)

    Google Scholar 

  24. Huang, J., Blanz, V., Heisele, B.: Face recognition with support vector machines and 3D head models. In: Pattern Recognition with Support Vector Machines, First International Workshop (2002)

    Google Scholar 

  25. Huang, X., Paragios, N., Metaxas, D.N.: Shape registration in implicit spaces using information theory and free form deformations. In: PAMI (2006)

    Google Scholar 

  26. Kharevych, L., Springborn, B., Schröder, P.: Discrete conformal mappings via circle patterns. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses (2005)

    Google Scholar 

  27. Kumar, V., Poggio, T.: Learning-based approach to estimation of morphable model parameters. AI Memo No. 1696 (2000)

    Google Scholar 

  28. Lanitis, A., Taylor, C., Cootes, T.: An automatic face identification system using flexible appearance models. In: Proc. British Machine Vision Conference (1994)

    Google Scholar 

  29. Leopold, D.A., O’Toole, A.J., Vetter, T., Blanz, V.: Prototype-referenced shape encoding revealed by high-level aftereffects. Nat. Neurosci. (2001)

    Google Scholar 

  30. Litke, N., Droske, M., Rumpf, M., Schröder, P.: An image processing approach to surface matching. In: Symposium on Geometry Processing (2005)

    Google Scholar 

  31. Minka, T.: Old and new matrix algebra useful for statistics (2000). http://www.stat.cmu.edu/~minka/papers/matrix.html

  32. Moreno, A.B., Sánchez, A.: GavabDB: a 3D face database. In: Workshop on Biometrics on the Internet (2004)

    Google Scholar 

  33. Murase, H., Nayar, S.: Visual learning and recognition of 3d objects from appearance. Int. J. Comput. Vis. 14, 5–24 (1995)

    Article  Google Scholar 

  34. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: AVSS (2009)

    Google Scholar 

  35. Phillips, P., Grother, P., Michaels, R., Blackburn, D., Tabassi, E., Bone, M.: Face recognition vendor test 2002: evaluation report. In: NISTIR 6965. National Institute of Standards and Technology, Gaithersburg (2003)

    Google Scholar 

  36. Phillips, J.P., Scruggs, T.W., O’Toole, A.J., Flynn, P.J., Bowyer, K.W., Schott, C.L., Sharpe, M.: FRVT 2006 and ICE 2006 large-scale results. In: NISTIR 7408 (2007)

    Google Scholar 

  37. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  38. Romdhani, S.: Face image analysis using a multiple features fitting strategy. Ph.D. dissertation (2005)

    Google Scholar 

  39. Romdhani, S., Vetter, T.: Estimating 3D shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior. In: CVPR (2005)

    Google Scholar 

  40. Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A 4, 519–524 (1987)

    Article  Google Scholar 

  41. ter Haar, F.B., Veltkamp, R.C.: A 3D face matching framework. In: SMI (2008)

    Google Scholar 

  42. Tipping, M., Bishop, C.: Probabilistic principal component analysis. J. R. Stat. Soc., Ser. B (1999)

    Google Scholar 

  43. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991)

    Article  Google Scholar 

  44. Vapnik, V.: The Nature of Statistical Learning. Springer, New York (1995)

    MATH  Google Scholar 

  45. Vetter, T., Troje, N.: Separation of texture and shape in images of faces for image coding and synthesis. J. Opt. Soc. Am. 14, 2152–2161 (1997)

    Article  Google Scholar 

  46. Vlasic, D., Brand, M., Pfister, H., Popović, J.: Face transfer with multilinear models. ACM Trans. Graph. (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Knothe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Knothe, R., Amberg, B., Romdhani, S., Blanz, V., Vetter, T. (2011). Morphable Models of Faces. In: Li, S., Jain, A. (eds) Handbook of Face Recognition. Springer, London. https://doi.org/10.1007/978-0-85729-932-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-932-1_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-931-4

  • Online ISBN: 978-0-85729-932-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics