Facial Landmark Localization

Abstract

Acquiring facial landmarks, for example, eye contours, mouth corners, nose, etc. is a very important and fundamental work in face recognition and face analysis related areas. This is therefore the task of facial landmark localization. In this chapter, a framework of facial landmark localization is introduced, aimed at finding the accurate positions of the facial feature points. It is a coarse-to-fine approach which could be divided into two main steps: first, precise eye location under probabilistic framework and second, generic facial landmark localization algorithm using random forest embedded active shape model. The algorithms can deal well with images which are unseen in the training set, processing with real time speed.

References

  1. 1.
    Baskan, S., Atalay, V.: Projection based method for segmentation of human face and its evaluation. Pattern Recognit. Lett. 23, 1623–1629 (2002) MATHCrossRefGoogle Scholar
  2. 2.
    Brunet, N., Perez, F., de la Torre, F.: Learning good features for active shape models. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 206–211. IEEE Computer Society Press, Los Alamitos (2009) CrossRefGoogle Scholar
  3. 3.
    Cootes, T.F., Taylor, C.J.: Active shape model search using local grey-level models: A quantitative evaluation. In: 4th British Machine Vision Conference, pp. 639–648. BMVA Press, Guildford (1993) Google Scholar
  4. 4.
    Cootes, T.F., Taylor, C.J.: Combining elastic and statistical models of appearance variation. In: Proceeding of 6th European Conference on Computer Vision, vol. 1, pp. 149–163. Springer, Berlin (2000) Google Scholar
  5. 5.
    Cootes, T.F., Taylor, C.J.: Constrained active appearance models. In: Proceeding of 8th International Conference on Computer Vision, vol. 1, pp. 748–754. IEEE Computer Society Press, Los Alamitos (2001) Google Scholar
  6. 6.
    Cootes, T.F., Taylor, C.J.: An algorithm for tuning an active appearance model to new data. In: Proceeding of British Machine Vision Conference, vol. 3, pp. 919–928. BMVA Press, Guildford (2006) Google Scholar
  7. 7.
    Cootes, T.F., Taylor, C.J., Cooper, D., Graham, J.: Training models of shape from sets of examples. In: 3rd British Machine Vision Conference, pp. 9–18. BMVA Press, Guildford (1992) Google Scholar
  8. 8.
    Cootes, T.F., Taylor, C.J., Lanitis, A.: Active shape models: Evaluation of a multi-resolution method for improving image search. In: 5th British Machine Vision Conference, pp. 327–336. BMVA Press, Guildford (1994) Google Scholar
  9. 9.
    Cootes, T.F., Taylor, C., Cooper, D., Graham, J.: Active shape models—their training and their applications. Comput. Vis. Image Underst. 61(1), 38–59 (1995) CrossRefGoogle Scholar
  10. 10.
    Cootes, T.F., Walker, K.N., Taylor, C.J.: View-based active appearance models. In: Proceeding of 4th International Conference on Automatic Face and Gesture Recognition, pp. 227–232. IEEE Computer Society Press, Los Alamitos (2000) CrossRefGoogle Scholar
  11. 11.
    Cootes, T.F., Wheeler, G., Walker, K., Taylor, C.J.: Coupled-view active appearance models. In: 11th British Machine Vision Conference, pp. 52–61. BMVA Press, Guildford (2000) Google Scholar
  12. 12.
    Cootes, T.F., Edwards, G., Taylor, C.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001) CrossRefGoogle Scholar
  13. 13.
    Cootes, T.F., Twining, C.J., Petrovic, V., Schestowitz, R., Taylor, C.J.: Groupwise construction of appearance models using piece-wise affine deformations. In: Proceeding of British Machine Vision Conference, vol. 2, pp. 879–888. BMVA Press, Guildford (2005) Google Scholar
  14. 14.
    Feng, G.C., Yuen, P.C.: Multi-cues eye detection on gray intensity image. Pattern Recognit. 34, 1033–1046 (2001) MATHCrossRefGoogle Scholar
  15. 15.
    Gross, R., Matthews, I., Baker, S.: Generic vs. person specific active appearance models. Image Vis. Comput. 23(1), 1080–1093 (2005) CrossRefGoogle Scholar
  16. 16.
    Hamsici, O., Martinez, A.: Active appearance models with rotation invariant kernels. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1003–1009. IEEE Computer Society Press, Los Alamitos (2009) CrossRefGoogle Scholar
  17. 17.
    Hess, M., Martinez, G.: Facial feature extraction based on the smallest univalue segment assimilating nucleus (susan) algorithm. In: Proceedings of Picture Coding Symposium, vol. 1, pp. 261–266. IEEE Computer Society Press, Los Alamitos (2004) Google Scholar
  18. 18.
    Hsu, R.L., Jain, A.K.: Generating discriminating cartoon faces using interacting snakes. IEEE Trans. Pattern Anal. Mach. Intell. 25(11), 1388–1398 (2003) CrossRefGoogle Scholar
  19. 19.
    Huang, C., Ai, H.Z., Li, Y., Lao, S.H.: High performance rotation invariant multiview face detection. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 671–686 (2007) CrossRefGoogle Scholar
  20. 20.
    Jiao, F., Li, S., Shum, H., Schuurmans, D.: Face alignment using statistical models and wavelet features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. I:321–327. IEEE Computer Society Press, Los Alamitos (2003) Google Scholar
  21. 21.
    Lee, H.-S., Kim, D.: Tensor-based aam with continuous variation estimation: Application to variation-robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1102–1116 (2009) CrossRefGoogle Scholar
  22. 22.
    Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Trans. Pattern Anal. Mach. Intell., 1465–1479 (2006) Google Scholar
  23. 23.
    Li, Y., Ito, W.: Shape parameter optimization for adaboosted active shape model. In: IEEE International Conference on Computer Vision, vol. 1, pp. 251–258 (2005) Google Scholar
  24. 24.
    Liebelt, J., Xiao, J., Yang, J.: Robust aam fitting by fusion of images and disparity data. In: Proceedings of IEEE Computer Vision and Pattern Recognition, vol. II, pp. 2483–2490. IEEE Computer Society Press, Los Alamitos (2006) Google Scholar
  25. 25.
    Liu, X.: Generic face alignment using boosted appearance model. In: Proceedings of IEEE Computer Vision and Pattern Recognition, p. 1079 (2007) Google Scholar
  26. 26.
    Liu, X.: Discriminative face alignment. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1941–1954 (2009) CrossRefGoogle Scholar
  27. 27.
    Papandreou, G., Maragos, P.: Adaptive and constrained algorithms for inverse compositional active appearance model fitting. In: Proceedings of Computer Vision and Pattern Recognition, p. 1 (2008) Google Scholar
  28. 28.
    Sung, K.K., Poggio, T.: Example based learning for view-based human face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20, 39–51 (1995) CrossRefGoogle Scholar
  29. 29.
    Tu, Z., Chen, X., Yuille, A.L., Zhu, S.-C.: Image parsing: Unifying segmentation, detection, and recognition. In: Proceeding of International Conference on Computer Vision, vol. 1, p. 18. IEEE Computer Society Press, Los Alamitos (2003) Google Scholar
  30. 30.
    Tu, J., Zhang, Z., Zeng, Z., Huang, T.: Face localization via hierarchical condensation with fisher boosting feature selection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. II, pp. 719–724. IEEE Computer Society Press, Los Alamitos (2004) Google Scholar
  31. 31.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple feature. In: Proceedings of Computer Vision and Pattern Recognition, vol. 1, pp. 511–518. IEEE Computer Society Press, Los Alamitos (2001) Google Scholar
  32. 32.
    Vogler, C., Li, Z., Kanaujia, A., Goldenstein, S., Metaxas, D.: The best of both worlds: Combining 3d deformable models with active shape models. In: IEEE International Conference on Computer Vision, pp. 1–7 (2007) CrossRefGoogle Scholar
  33. 33.
    Xiao, J., Baker, S., Matthews, I., Kanade, T.: Real-time combined 2d+3d active appearance models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 535–542. IEEE Computer Society Press, Los Alamitos (2004) Google Scholar
  34. 34.
    Zhang, L., Ai, H.: Multi-view active shape model with robust parameter estimation. In: International Conference on Pattern Recognition, vol. 4, pp. 469–468 (2006) Google Scholar
  35. 35.
    Zhou, Z.H., Geng, X.: Projection functions for eye detection. Pattern Recognit. 37(5), 1049–1056 (2004) MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Electronic EngineeringTsinghua UniversityBeijingChina

Personalised recommendations