Face Aging Modeling

Abstract

One of the challenges in automatic face recognition is to achieve temporal invariance. In other words, the goal is to come up with a representation and matching scheme that is robust to changes due to facial aging. Facial aging is a complex process that affects both the 3D shape of the face and its texture (e.g., wrinkles). These shape and texture changes degrade the performance of automatic face recognition systems. However, facial aging has not received substantial attention compared to other facial variations due to pose, lighting, and expression. We review some of the representative face aging modeling techniques, especially the 3D aging modeling technique. The 3D aging modeling technique adapts view invariant 3D face models to the given 2D face aging database. The evaluation results of the 3D aging modeling technique on three different databases (FG-NET, MORPH and BROWNS) using FaceVACS, a state-of-the-art commercial face recognition engine showed its effectiveness in handling the aging effect.

References

  1. 1.
    Albert, A., Ricanek, K., Patterson, E.: The aging adult skull and face: A review of the literature and report on factors and processes of change. UNCW Technical Report, WRG FSC-A (2004) Google Scholar
  2. 2.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Proc. Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 187–194 (1999) Google Scholar
  3. 3.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001) CrossRefGoogle Scholar
  4. 4.
    FaceVACS Software Developer Kit, Cognitec Systems GmbH. http://www.cognitec-systems.de
  5. 5.
    Farkas, L.G. (ed.): Anthropometry of the Head and Face. Lippincott Williams & Wilkins, Baltimore (1994) Google Scholar
  6. 6.
    FG-NET Aging Database. http://www.fgnet.rsunit.com
  7. 7.
    Geng, X., Zhou, Z.-H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE Trans. Pattern Anal. Mach. Intell. 29, 2234–2240 (2007) CrossRefGoogle Scholar
  8. 8.
    Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 442–455 (2002) CrossRefGoogle Scholar
  9. 9.
    Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(1), 621–628 (2004) CrossRefGoogle Scholar
  10. 10.
    Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.: A study of face recognition as people age. In: Proc. IEEE Int. Conf. on Computer Vision (ICCV), pp. 1–8 (2007) Google Scholar
  11. 11.
    Nixon, N., Galassi, P.: The Brown Sisters, Thirty-Three Years. The Museum of Modern Art, NY, USA (2007) Google Scholar
  12. 12.
    O’Toole, A., Vetter, T., Volz, H., Salter, E.: Three-dimensional caricatures of human heads: distinctiveness and the perception of facial age. Perception 26, 719–732 (1997) CrossRefGoogle Scholar
  13. 13.
    Park, U., Tong, Y., Jain, A.K.: Age invariant face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 947–954 (2010) CrossRefGoogle Scholar
  14. 14.
    Patterson, E., Ricanek, K., Albert, M., Boone, E.: Automatic representation of adult aging in facial images. In: Proc. Int. Conf. on Visualization, Imaging, and Image Processing, IASTED, pp. 171–176 (2006) Google Scholar
  15. 15.
    Patterson, E., Sethuram, A., Albert, M., Ricanek, K., King, M.: Aspects of age variation in facial morphology affecting biometrics. In: Proc. IEEE Conf. on Biometrics: Theory, Applications, and Systems (BTAS), pp. 1–6 (2007) Google Scholar
  16. 16.
    Phillips, P.J., Scruggs, W.T., O’Toole, A.J., Flynn, P.J., Bowyer, K.W., Schott, C.L., Sharpe, M.: FRVT 2006 and ICE 2006 large-scale results. Technical Report NISTIR 7408, National Institute of Standards and Technology Google Scholar
  17. 17.
    Pighin, F., Szeliski, R., Salesin, D.H.: Modeling and animating realistic faces from images. Int. J. Comput. Vis. 50(2), 143–169 (2002) MATHCrossRefGoogle Scholar
  18. 18.
    Pittenger, J.B., Shaw, R.E.: Aging faces as viscal-elastic events: Implications for a theory of nonrigid shape perception. J. Exp. Psychol. Hum. Percept. Perform. 1, 374–382 (1975) CrossRefGoogle Scholar
  19. 19.
    Ramanathan, N., Chellappa, R.: Face verification across age progression. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 462–469 (2005) Google Scholar
  20. 20.
    Ramanathan, N., Chellappa, R.: Modeling age progression in young faces. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 387–394 (2006) Google Scholar
  21. 21.
    Ricanek, K.J., Tesafaye, T.: Morph: A longitudinal image database of normal adult age-progression. In: Proc. Int. Conf. on Automatic Face and Gesture Recognition (FG), pp. 341–345 (2006) CrossRefGoogle Scholar
  22. 22.
    Scherbaum, K., Sunkel, M., Seidel, H.-P., Blanz, V.: Prediction of individual non-linear aging trajectories of faces. Comput. Graph. Forum 26(3), 285–294 (2007) CrossRefGoogle Scholar
  23. 23.
    Stegmann, M.B.: The AAM-API: An open source active appearance model implementation. In: Proc. Int. Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 951–952 (2003) CrossRefGoogle Scholar
  24. 24.
    Suo, J., Min, F., Zhu, S., Shan, S., Chen, X.: A multi-resolution dynamic model for face aging simulation. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007) Google Scholar
  25. 25.
    Thompson, D.W.: On growth and form (1992) Google Scholar
  26. 26.
    Wang, J., Shang, Y., Su, G., Lin, X.: Age simulation for face recognition. In: Proc. Int. Conf. on Pattern Recognition (ICPR), pp. 913–916 (2006) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Michigan State UniversityEast LansingUSA

Personalised recommendations