Skip to main content

Do Intensity-Modulated Radiation, Image-Guided Radiation, and 3D Brachytherapy Significantly Advance Radiotherapeutic Management of Gynecologic Cancers?

  • Chapter
  • First Online:
Controversies in the Management of Gynecological Cancers

Abstract

The use of 3-dimensional (3D) imaging to enhance radiation delivery for gynecologic malignancies has increased dramatically in the past decade. Advances in technology have permitted a rapid evolution in the fields of intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT), and 3D image-planned brachytherapy (3DBT). In cervical and endometrial cancer, significant progress has been made in the implementation of postoperative IMRT. The use of IMRT and IGRT in the setting of locally advanced gynecologic cancer remains controversial due to issues surrounding organ and tumor changes during the course of treatment. Advantages of and controversies over the use of IMRT, IGRT, and 3DBT will be discussed in detail. Specifically, the role of proper target delineation and the importance of accurate contouring, the problem of organ motion and tumor tracking, and an overview of clinical outcomes will be presented. The use of these new technologies remains in its early development, with the potential for substantial progress in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Viswanathan AN, Erickson B, Rownd J. Image-based approaches to interstitial brachytherapy. In: Viswanathan A, Kirisits C, Erickson B, Potter R, editors. Gynecologic radiation therapy: novel approaches to image-guidance and management. 1st ed. Berlin-Heidelberg: Springer; 2011. p. 247–59.

    Chapter  Google Scholar 

  2. Tanderup K, Georg D, Potter R, Kirisits C, Grau C, Lindegaard JC. Adaptive management of cervical cancer radiotherapy. Semin Radiat Oncol. 2010;20:121–9.

    Article  PubMed  Google Scholar 

  3. Mayr NA, Yuh WT, Taoka T, et al. Serial therapy-induced changes in tumor shape in cervical cancer and their impact on assessing tumor volume and treatment response. AJR Am J Roentgenol. 2006;187:65–72.

    Article  PubMed  Google Scholar 

  4. Beadle BM, Jhingran A, Salehpour M, Sam M, Iyer RB, Eifel PJ. Cervix regression and motion during the course of external beam chemoradiation for cervical cancer. Int J Radiat Oncol Biol Phys. 2009;73:235–41.

    Article  PubMed  Google Scholar 

  5. Lim K, Chan P, Dinniwell R, et al. Cervical cancer regression measured using weekly magnetic resonance imaging during fractionated radiotherapy: radiobiologic modeling and correlation with tumor hypoxia. Int J Radiat Oncol Biol Phys. 2008;70:126–33.

    Article  PubMed  Google Scholar 

  6. Lanciano R. Optimizing radiation parameters for cervical cancer. Semin Radiat Oncol. 2000;10:36–43.

    Article  CAS  PubMed  Google Scholar 

  7. van den Berg HA, Olofsen-van Acht MJ, van Santvoort JP, Seven M, Quint S, Levendag PC. Definition and validation of a reference target volume in early stage node-positive cervical carcinoma, based on lymphangiograms and CT-scans. Radiother Oncol. 2000;54:163–70.

    Article  PubMed  Google Scholar 

  8. Viswanathan AN. Advances in the use of radiation for gynecologic cancers. Hematol Oncol Clin North Am. 2012;26:157–68.

    Article  PubMed  Google Scholar 

  9. Nout RA, van de Poll-Franse LV, Lybeert ML, et al. Long-term outcome and quality of life of patients with endometrial carcinoma treated with or without pelvic radiotherapy in the post operative radiation therapy in endometrial carcinoma 1 (PORTEC-1) trial. J Clin Oncol. 2011;29:1692–700.

    Article  PubMed  Google Scholar 

  10. Nout RA, Putter H, Jurgenliemk-Schulz IM, et al. Five-year quality of life of endometrial cancer patients treated in the randomised post operative radiation therapy in endometrial cancer (PORTEC-2) trial and comparison with norm data. Eur J Cancer. 2012;48:1638–48.

    Article  PubMed  Google Scholar 

  11. Keys HM, Roberts JA, Brunetto VL, et al. A phase III trial of surgery with or without adjunctive external pelvic radiation therapy in intermediate risk endometrial adenocarcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2004;92:744–51.

    Article  PubMed  Google Scholar 

  12. Syed AMN, Puthawala AA, Abdelaziz NN, et al. Long term results of low dose rate interstitial intracavitary brachytherapy in the treatment of carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2002;54:67–78.

    Article  PubMed  Google Scholar 

  13. Viswanathan AN, Cormack R, Rawal B, Lee H. Increasing brachytherapy dose predicts survival for interstitial and tandem-based radiation for stage IIIB cervical cancer. Int J Gynecol Cancer. 2009;19:1402–6.

    Article  PubMed  Google Scholar 

  14. Eifel PJ, Levenback C, Wharton JT, Oswald MJ. Time course and incidence of late complications in patients treated with radiation therapy for FIGO stage IB carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 1995;32:1289–300.

    Article  CAS  PubMed  Google Scholar 

  15. Kidd E, Grigsby P. The use of positron emission tomographic imaging for image-guided therapy. In: Viswanathan A, Kirisits C, Erickson B, Potter R, editors. Gynecologic radiation therapy: novel approaches to image-guidance and management. Berlin-Heidelberg: Springer; 2011. p. 41–8.

    Chapter  Google Scholar 

  16. Beriwal S, Jain SK, Heron DE, de Andrade RS, Lin CJ, Kim H. Dosimetric and toxicity comparison between prone and supine position IMRT for endometrial cancer. Int J Radiat Oncol Biol Phys. 2007;67:485–9.

    Article  PubMed  Google Scholar 

  17. Adli M, Mayr NA, Kaiser HS, et al. Does prone positioning reduce small bowel dose in pelvic radiation with intensity-modulated radiotherapy for gynecologic cancer? Int J Radiat Oncol Biol Phys. 2003;57:230–8.

    Article  PubMed  Google Scholar 

  18. Small Jr W, Mell LK, Anderson P, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71:428–34.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Jhingran A, Winter K, Portelance L, et al. A phase II study of intensity modulated radiation therapy to the pelvis for postoperative patients with endometrial carcinoma: radiation therapy oncology group trial 0418. Int J Radiat Oncol Biol Phys. 2012;84:e23–8.

    Article  PubMed  Google Scholar 

  20. Taylor A, Rockall AG, Reznek RH, Powell ME. Mapping pelvic lymph nodes: guidelines for delineation in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63:1604–12.

    Article  PubMed  Google Scholar 

  21. Chao KS, Lin M. Lymphangiogram-assisted lymph node target delineation for patients with gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2002;54:1147–52.

    Article  PubMed  Google Scholar 

  22. Dinniwell R, Chan P, Czarnota G, et al. Pelvic lymph node topography for radiotherapy treatment planning from ferumoxtran-10 contrast-enhanced magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2009;74:844–51.

    Article  PubMed  Google Scholar 

  23. Ahamad A, D’Souza W, Salehpour M, et al. Intensity-modulated radiation therapy after hysterectomy: comparison with conventional treatment and sensitivity of the normal-tissue-sparing effect to margin size. Int J Radiat Oncol Biol Phys. 2005;62:1117–24.

    Article  PubMed  Google Scholar 

  24. Ma DJ, Michaletz-Lorenz M, Goddu SM, Grigsby PW. Magnitude of interfractional vaginal cuff movement: implications for external irradiation. Int J Radiat Oncol Biol Phys. 2012;82:1439–44.

    Article  PubMed  Google Scholar 

  25. Jhingran A, Salehpour M, Sam M, Levy L, Eifel PJ. Vaginal motion and bladder and rectal volumes during pelvic intensity-modulated radiation therapy after hysterectomy. Int J Radiat Oncol Biol Phys. 2012;82:256–62.

    Article  PubMed  Google Scholar 

  26. Buchali A, Koswig S, Dinges S, et al. Impact of the filling status of the bladder and rectum on their integral dose distribution and the movement of the uterus in the treatment planning of gynaecological cancer. Radiother Oncol. 1999;52:29–34.

    Article  CAS  PubMed  Google Scholar 

  27. Jensen L, Mundt A, Mell L. Intensity-modulated radiotherapy for gynecologic malignancies. In: Mundt A, Yashar C, Mell L, editors. Radiation medicine rounds: gynecologic cancer. New York: Demos Medical; 2012. p. 341–56.

    Google Scholar 

  28. Beriwal S, Heron DE, Kim H, et al. Intensity-modulated radiotherapy for the treatment of vulvar carcinoma: a comparative dosimetric study with early clinical outcome. Int J Radiat Oncol Biol Phys. 2006;64:1395–400.

    Article  PubMed  Google Scholar 

  29. Roeske JC, Lujan A, Rotmensch J, Waggoner SE, Yamada D, Mundt AJ. Intensity-modulated whole pelvic radiation therapy in patients with gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2000;48:1613–21.

    Article  CAS  PubMed  Google Scholar 

  30. Heron DE, Gerszten K, Selvaraj RN, et al. Conventional 3D conformal versus intensity-modulated radiotherapy for the adjuvant treatment of gynecologic malignancies: a comparative dosimetric study of dose-volume histograms small star, filled. Gynecol Oncol. 2003;91:39–45.

    Article  CAS  PubMed  Google Scholar 

  31. Guo S, Ennis RD, Bhatia S, et al. Assessment of nodal target definition and dosimetry using three different techniques: implications for re-defining the optimal pelvic field in endometrial cancer. Radiat Oncol. 2010;5:59.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Georg P, Georg D, Hillbrand M, Kirisits C, Potter R. Factors influencing bowel sparing in intensity modulated whole pelvic radiotherapy for gynaecological malignancies. Radiother Oncol. 2006;80:19–26.

    Article  PubMed  Google Scholar 

  33. Yang R, Xu S, Jiang W, Wang J, Xie C. Dosimetric comparison of postoperative whole pelvic radiotherapy for endometrial cancer using three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, and helical tomotherapy. Acta Oncol. 2010;49:230–6.

    Article  PubMed  Google Scholar 

  34. Cozzi L, Dinshaw KA, Shrivastava SK, et al. A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol. 2008;89:180–91.

    Article  PubMed  Google Scholar 

  35. Mundt AJ, Lujan AE, Rotmensch J, et al. Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2002;52:1330–7.

    Article  PubMed  Google Scholar 

  36. Kidd EA, Siegel BA, Dehdashti F, et al. Clinical outcomes of definitive intensity-modulated radiation therapy with fluorodeoxyglucose-positron emission tomography simulation in patients with locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2010;77:1085–91.

    Article  PubMed  Google Scholar 

  37. Hasselle MD, Rose BS, Kochanski JD, et al. Clinical outcomes of intensity-modulated pelvic radiation therapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2011;80:1436–45.

    Article  PubMed  Google Scholar 

  38. Chen CC, Lin JC, Jan JS, Ho SC, Wang L. Definitive intensity-modulated radiation therapy with concurrent chemotherapy for patients with locally advanced cervical cancer. Gynecol Oncol. 2011;122:9–13.

    Article  PubMed  Google Scholar 

  39. Hsieh CH, Wei MC, Lee HY, et al. Whole pelvic helical tomotherapy for locally advanced cervical cancer: technical implementation of IMRT with helical tomotherapy. Radiat Oncol. 2009;4:62.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Poorvu PD, Sadow CA, Townamchai K, Damato AL, Viswanathan AN. Duodenal and other gastrointestinal toxicity in cervical and endometrial cancer treated with extended-field intensity-modulated radiation therapy to paraaortic lymph nodes. Int J Radiat Oncol Biol Phys. 2013;85:1262–8.

    Google Scholar 

  41. Townamchai K, Poorvu PD, Damato AL, et al. Radiation dose escalation using intensity modulated radiation therapy for gross unresected node-positive endometrial cancer. Practical Radiat Oncol. Epub Sept 2013.

    Google Scholar 

  42. Portelance L, Chao KS, Grigsby PW, Bennet H, Low D. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys. 2001;51:261–6.

    Article  CAS  PubMed  Google Scholar 

  43. Esthappan J, Mutic S, Harms WB, Dempsey JF, Low DA. Dosimetry of therapeutic photon beams using an extended dose range film. Med Phys. 2002;29:2438–45.

    Article  PubMed  Google Scholar 

  44. Mutic S, Malyapa RS, Grigsby PW, et al. PET-guided IMRT for cervical carcinoma with positive para-aortic lymph nodes-a dose-escalation treatment planning study. Int J Radiat Oncol Biol Phys. 2003;55:28–35.

    Article  PubMed  Google Scholar 

  45. Salama JK, Mundt AJ, Roeske J, Mehta N. Preliminary outcome and toxicity report of extended-field, intensity-modulated radiation therapy for gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2006;65:1170–6.

    Article  PubMed  Google Scholar 

  46. Gerszten K, Colonello K, Heron DE, et al. Feasibility of concurrent cisplatin and extended field radiation therapy (EFRT) using intensity-modulated radiotherapy (IMRT) for carcinoma of the cervix. Gynecol Oncol. 2006;102:182–8.

    Article  CAS  PubMed  Google Scholar 

  47. Mell LK, Tiryaki H, Ahn KH, Mundt AJ, Roeske JC, Aydogan B. Dosimetric comparison of bone marrow-sparing intensity-modulated radiotherapy versus conventional techniques for treatment of cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71:1504–10.

    Article  PubMed  Google Scholar 

  48. Hall EJ, Wuu CS. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys. 2003;56:83–8.

    Article  PubMed  Google Scholar 

  49. Lim K, Small Jr W, Portelance L, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys. 2011;79:348–55.

    Article  PubMed  Google Scholar 

  50. Perez CA, Grigsby PW, Galakatos A, et al. Radiation therapy in management of carcinoma of the vulva with emphasis on conservation therapy. Cancer. 1993;71:3707–16.

    Article  CAS  PubMed  Google Scholar 

  51. Tyagi N, Lewis JH, Yashar CM, et al. Daily online cone beam computed tomography to assess interfractional motion in patients with intact cervical cancer. Int J Radiat Oncol Biol Phys. 2011;80:273–80.

    Article  PubMed  Google Scholar 

  52. van de Bunt L, Jurgenliemk-Schulz IM, de Kort GA, Roesink JM, Tersteeg RJ, van der Heide UA. Motion and deformation of the target volumes during IMRT for cervical cancer: what margins do we need? Radiother Oncol. 2008;88:233–40.

    Article  PubMed  Google Scholar 

  53. Lee CM, Shrieve DC, Gaffney DK. Rapid involution and mobility of carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2004;58:625–30.

    Article  PubMed  Google Scholar 

  54. van de Bunt L, van der Heide UA, Ketelaars M, de Kort GA, Jurgenliemk-Schulz IM. Conventional, conformal, and intensity-modulated radiation therapy treatment planning of external beam radiotherapy for cervical cancer: the impact of tumor regression. Int J Radiat Oncol Biol Phys. 2006;64:189–96.

    Article  PubMed  Google Scholar 

  55. Wang JZ, Mayr NA, Zhang D, et al. Sequential magnetic resonance imaging of cervical cancer: the predictive value of absolute tumor volume and regression ratio measured before, during, and after radiation therapy. Cancer. 2010;116:5093–101.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Lim K, Milosevic M, Brock K, Fyles A. Image-guidance in external beam planning for locally advanced cervical cancer. In: Viswanathan A, Kirisits C, Erickson B, Potter R, editors. Gynecologic radiation therapy: novel approaches to image-guidance and management. Berlin-Heidelberg: Springer; 2011. p. 51–60.

    Chapter  Google Scholar 

  57. Stewart J, Lim K, Kelly V, et al. Automated weekly replanning for intensity-modulated radiotherapy of cervix cancer. Int J Radiat Oncol Biol Phys. 2010;78:350–8.

    Article  PubMed  Google Scholar 

  58. Lim K, Kelly V, Stewart J, et al. Pelvic radiotherapy for cancer of the cervix: is what you plan actually what you deliver? Int J Radiat Oncol Biol Phys. 2009;74:304–12.

    Article  PubMed  Google Scholar 

  59. Viswanathan AN, Thomadsen B. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: general principles. Brachytherapy. 2012;11:33–46.

    Article  PubMed  Google Scholar 

  60. Barraclough LH, Swindell R, Livsey JE, Hunter RD, Davidson SE. External beam boost for cancer of the cervix uteri when intracavitary therapy cannot be performed. Int J Radiat Oncol Biol Phys. 2008;71:772–8.

    Article  PubMed  Google Scholar 

  61. Beadle BM, Jhingran A, Yom SS, Ramirez PT, Eifel PJ. Patterns of regional recurrence after definitive radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2010;76:1396–403.

    Article  PubMed  Google Scholar 

  62. Dimopoulos JC, Potter R, Lang S, et al. Dose-effect relationship for local control of cervical cancer by magnetic resonance image-guided brachytherapy. Radiother Oncol. 2009;93:311–5.

    Article  PubMed  Google Scholar 

  63. Viswanathan AN, Erickson BA. Three-dimensional imaging in gynecologic brachytherapy: a survey of the American Brachytherapy Society. Int J Radiat Oncol Biol Phys. 2010;76:104–9.

    Article  PubMed  Google Scholar 

  64. Viswanathan AN, Creutzberg CL, Craighead P, et al. International brachytherapy practice patterns: a survey of the Gynecologic Cancer Intergroup (GCIG). Int J Radiat Oncol Biol Phys. 2012;82:250–5.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Viswanathan AN, Moughan J, Small Jr W, et al. The quality of cervical cancer brachytherapy implantation and the impact on local recurrence and disease-free survival in radiation therapy oncology group prospective trials 0116 and 0128. Int J Gynecol Cancer. 2012;22:123–31.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Small Jr W, Strauss JB, Hwang CS, Cohen L, Lurain J. Should uterine tandem applicators ever be placed without ultrasound guidance? No: a brief report and review of the literature. Int J Gynecol Cancer. 2011;21:941–4.

    Article  PubMed  Google Scholar 

  67. Potter R, Georg P, Dimopoulos JC, et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol. 2011;100:116–23.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Schoeppel SL, Ellis JH, LaVigne ML, Schea RA, Roberts JA. Magnetic resonance imaging during intracavitary gynecologic brachytherapy. Int J Radiat Oncol Biol Phys. 1992;23:169–74.

    Article  CAS  PubMed  Google Scholar 

  69. Potter R, Knocke TH, Fellner C, Baldass M, Reinthaller A, Kucera H. Definitive radiotherapy based on HDR brachytherapy with iridium 192 in uterine cervix carcinoma: report on the Vienna University Hospital findings (1993–1997) compared to the preceding period in the context of ICRU 38 recommendations. Cancer Radiother. 2000;4:159–72.

    Article  CAS  PubMed  Google Scholar 

  70. Eisbruch A, Johnston CM, Martel MK, et al. Customized gynecologic interstitial implants: CT-based planning, dose evaluation, and optimization aided by laparotomy. Int J Radiat Oncol Biol Phys. 1998;40:1087–93.

    Article  CAS  PubMed  Google Scholar 

  71. Erickson B, Albano K, Gillin M. CT-guided interstitial implantation of gynecologic malignancies. Int J Radiat Oncol Biol Phys. 1996;36:699–709.

    Article  CAS  PubMed  Google Scholar 

  72. Viswanathan AN, Cormack R, Holloway CL, et al. Magnetic resonance-guided interstitial therapy for vaginal recurrence of endometrial cancer. Int J Radiat Oncol Biol Phys. 2006;66:91–9.

    Article  PubMed  Google Scholar 

  73. Viswanathan A, Szymonifka J, Tempany-Afdhal C, O’Farrell D, Cormack R. A prospective trial of real-time magnetic resonance-guided catheter placement in interstitial gynecologic brachytherapy. Brachytherapy. 2013;12:240–7.

    Article  PubMed  Google Scholar 

  74. Kirisits C, Potter R, Lang S, Dimopoulos J, Wachter-Gerstner N, Georg D. Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2005;62:901–11.

    Article  PubMed  Google Scholar 

  75. Lindegaard JC, Fokdal LU, Nielsen SK, Juul-Christensen J, Tanderup K. MRI-guided adaptive radiotherapy in locally advanced cervical cancer from a Nordic perspective. Acta Oncol 2013;52:1360–8.

    Google Scholar 

  76. Jurgenliemk-Schulz IM, Tersteeg RJ, Roesink JM, et al. MRI-guided treatment-planning optimisation in intracavitary or combined intracavitary/interstitial PDR brachytherapy using tandem ovoid applicators in locally advanced cervical cancer. Radiother Oncol. 2009;93:322–30.

    Article  PubMed  Google Scholar 

  77. De Brabandere M, Mousa AG, Nulens A, Swinnen A, Van Limbergen E. Potential of dose optimisation in MRI-based PDR brachytherapy of cervix carcinoma. Radiother Oncol. 2008;88:217–26.

    Article  PubMed  Google Scholar 

  78. Viswanathan AN, Erickson B, Beriwal S et al. Consensus contours for CT versus MRI in image-based brachytherapy for cervical cancer to generate an RTOG atlas. Int J Radiat Oncol Biol Phys 2013;87:s30.

    Google Scholar 

  79. Viswanathan AN, Dimopoulos J, Kirisits C, Berger D, Potter R. Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours. Int J Radiat Oncol Biol Phys. 2007;68:491–8.

    Google Scholar 

  80. Haie-Meder C, Potter R, Van Limbergen E, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74:235–45.

    Article  PubMed  Google Scholar 

  81. Charra-Brunaud C, Harter V, Delannes M, et al. Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: results of the national STIC prospective study. Radiother Oncol. 2012;103:305–13.

    Article  PubMed  Google Scholar 

  82. Chargari C, Magne N, Dumas I, et al. Physics contributions and clinical outcome with 3D-MRI-based pulsed-dose-rate intracavitary brachytherapy in cervical cancer patients. Int J Radiat Oncol Biol Phys. 2009;74:133–9.

    Article  PubMed  Google Scholar 

  83. Haie-Meder C, Chargari C, Rey A, Dumas I, Morice P, Magne N. MRI-based low dose-rate brachytherapy experience in locally advanced cervical cancer patients initially treated by concomitant chemoradiotherapy. Radiother Oncol. 2010;96:161–5.

    Article  PubMed  Google Scholar 

  84. Tan LT, Coles CE, Hart C, Tait E. Clinical impact of computed tomography-based image-guided brachytherapy for cervix cancer using the tandem-ring applicator – the Addenbrooke’s experience. Clin Oncol (R Coll Radiol). 2009;21:175–82.

    Article  CAS  Google Scholar 

  85. Kang HC, Shin KH, Park SY, Kim JY. 3D CT-based high-dose-rate brachytherapy for cervical cancer: clinical impact on late rectal bleeding and local control. Radiother Oncol. 2010;97:507–13.

    Article  PubMed  Google Scholar 

  86. Lee LJ, Damato AL and Viswanathan AN. Clinical outcomes of high-dose-rate Interstitial gynecologic brachytherapy using real-time CT-guidance. Brachytherapy 2013; 12:303–10.

    Google Scholar 

  87. Kapur T, Egger J, Damato A, Schmidt E, Viswanathan A. 3T MR-guided gynecologic brachytherapy. Magn Reson Imaging. 2012;30:1279–90.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Van Dyk S, Narayan K, Fisher R, Bernshaw D. Conformal brachytherapy planning for cervical cancer using transabdominal ultrasound. Int J Radiat Oncol Biol Phys. 2009;75:64–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akila Ninette Viswanathan MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Viswanathan, A.N., Lindegaard, J.C. (2014). Do Intensity-Modulated Radiation, Image-Guided Radiation, and 3D Brachytherapy Significantly Advance Radiotherapeutic Management of Gynecologic Cancers?. In: Ledermann, J., Creutzberg, C., Quinn, M. (eds) Controversies in the Management of Gynecological Cancers. Springer, London. https://doi.org/10.1007/978-0-85729-910-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-910-9_22

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-909-3

  • Online ISBN: 978-0-85729-910-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics