Skip to main content
  • 991 Accesses

Abstract

Chapter 1 defines the various terms and definitions related to structural health monitoring. The main technical approaches used for structural health monitoring are discussed. These include methods based on mathematical models of the undamaged and damaged structures and those based on modal data such as frequencies and mode shapes. In addition, localized damage detection methods based on strain monitoring and non-destructive testing are described. Three main soft computing methods (neural networks, genetic algorithms, and fuzzy logic) used for solving the structural health monitoring problem are discussed with reference to the published literature. The advantages and shortcomings of each of these methods are brought out, and techniques which hybridize these methods are shown to be good alternatives. The genetic fuzzy system is introduced as an excellent choice for solving the pattern recognition problems in structural health monitoring. The helicopter rotor system health and usage monitoring system is used as an example to illustrate the different ideas for a real engineering system. The chapter ends with a summary of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brian, D.: Larger helicopter HUM/FDR: benefits and developments. In: Proc. 55th Annual Forum of the American Helicopter Society, Montreal, Canada, pp. 1839–1846 (1999)

    Google Scholar 

  2. Cronkhite, J.: Practical application of health and usage monitoring (HUMS) to helicopter rotor, engine and drive system. In: Proc. 49th Annual Forum of the American Helicopter Society, St. Louis, MO, USA, pp. 1445–1455 (1993)

    Google Scholar 

  3. Land, J., Weitzman, C.: How HUMS have the potential of significantly reducing the direct operating costs for modern helicopters through monitoring. In: Proc. 51st Annual Forum of the American Helicopter Society, Fort Worth, TX, USA, pp. 744–757 (1995)

    Google Scholar 

  4. Pouradier, J., Trouvi, M.: An assessment of Eurocopter experience in HUMS development and support. In: Proc. 57th Annual Forum of the American Helicopter Society, Alexandria, VA, USA, pp. 1790–1797 (2001)

    Google Scholar 

  5. Stevens, P., Hall, D., Smith, E.: A multidisciplinary research approach to rotorcraft health and usage monitoring. In: Proc. 52nd Annual Forum of the American Helicopter Society, Washington, DC, USA, pp. 1732–1751 (1996)

    Google Scholar 

  6. Cleveland, G., Trammel, C.: Integrated health and usage monitoring system for the SH-60B helicopter. In: Proc. 52nd Annual Forum of the American Helicopter Society, Washington, DC, USA, pp. 1767–1787 (1996)

    Google Scholar 

  7. Kumar, S., Roy, N., Ganguli, R.: Monitoring low cycle fatigue damage in turbine blades using vibration characteristics. Mech. Syst. Signal Process. 21, 480–501 (2007)

    Article  Google Scholar 

  8. Roy, N., Ganguli, R.: Helicopter rotor blade frequency evolution with damage growth and signal processing. J. Sound Vib. 283, 821–851 (2005)

    Article  Google Scholar 

  9. Beena, P., Ganguli, R.: Structural damage detection using fuzzy cognitive maps and Hebbian learning. Appl. Soft Comput. 11, 1014–1020 (2011)

    Article  Google Scholar 

  10. Gayathri, P., Umesh, K., Ganguli, R.: Effect of matrix cracking and material uncertainty on composite plates. Reliab. Eng. Syst. Saf. 95, 716–728 (2010)

    Article  Google Scholar 

  11. Ganguli, R., Chopra, I., Haas, D.: Detection of helicopter rotor system simulated faults using neural networks. J. Am. Helicopter Soc. 42, 161–171 (1997)

    Article  Google Scholar 

  12. Ganguli, R.: Health monitoring of helicopter rotor in forward flight using fuzzy logic. AIAA J. 40, 2773–2781 (2002)

    Article  Google Scholar 

  13. Miles, T., Lucas, M., Halliwell, N., Rothberg, S., et al.: Torsional and bending vibration measurements on rotors using laser technology. J. Sound Vib. 266, 441–467 (1999)

    Article  Google Scholar 

  14. Cabell, R., Fuller, C., O’Brien, W.: Neural network modelling of oscillatory loads and fatigue damage estimation of helicopter components. J. Sound Vib. 209, 329–342 (1998)

    Article  Google Scholar 

  15. Doebling, S., Farrar, C., Prime, M.: A summary review of vibration based damage identification methods. Shock Vib. Dig. 30, 91–105 (1998)

    Article  Google Scholar 

  16. Salawu, O.: Detection of structural damage through changes in frequency: a review. Eng. Struct. 19, 718–723 (1997)

    Article  Google Scholar 

  17. Diazvaldes, S., Soutis, C.: Delamination detection in composite laminates from variations of their modal characteristics. J. Sound Vib. 228, 1–9 (1999)

    Article  Google Scholar 

  18. Leonard, F., Lanteigne, J., Lalonde, S., Turcotte, Y., et al.: Free vibration behavior of a cracked beam and crack detection. Syst. Signal Process. 15, 529–48 (2001)

    Article  Google Scholar 

  19. Zou, Y., Tong, L., Steven, G.: Vibration based model dependant damage (delamination) identification and health monitoring for composite structures: a review. J. Sound Vib. 230, 357–78 (2000)

    Article  Google Scholar 

  20. Wahab, A.: Effect of modal curvatures on damage detection using model updating. Mech. Syst. Signal Process. 15, 439–45 (2001)

    Article  Google Scholar 

  21. Ratcliffe, C.: A frequency and curvature based experimental method for detecting damage in structures. J. Vib. Acoust. 122, 32–49 (2000)

    Google Scholar 

  22. Sampaio, R., Maia, N., Silva, J.: Damage detection using frequency response function curvature method. J. Sound Vib. 226, 1029–42 (1999)

    Article  Google Scholar 

  23. Hwang, K.C.: Damage detection in structures using a few frequency response measurements. J. Sound Vib. 2701, 1–14 (2004)

    Article  Google Scholar 

  24. Cattarius, J., Inman, D.: Experimental verification of intelligent fault detection in rotor blades. Int. J. Syst. Sci. 31, 1375–1379 (2000)

    Article  MATH  Google Scholar 

  25. Schoess, J., Malver, F., Iyer, B., Kooyman, J., et al.: Rotor acoustic monitoring system (RAMS): a fatigue crack detection system. In: Proc. 53rd Annual Forum of the American Helicopter Society, Virginia Beach, VA, USA, pp. 274–281 (1997)

    Google Scholar 

  26. Lakshmanan, K., Pines, D.: Damage identification of chordwise crack size and location in uncoupled composite rotorcraft flexbeams. J. Intell. Mater. Syst. Struct. 9(2), 146–155 (1998)

    Article  Google Scholar 

  27. Purekar, A., Lakshmanan, K.: Detecting chordwise cracks and delamination in uncoupled composite rotorcraft flexbeams under rotation. In: Proc. 54th Annual Forum of the American Helicopter Society, Washington, DC, USA, pp. 1026–1043 (1998)

    Google Scholar 

  28. Oster, R.: Computed tomography as a non-destructive test method for fiber main rotor blades in development, series and maintenance. In: Computerized Tomography for Industrial Applications and Image Processing in Radiology, Berlin, Germany (1999). (Paper 4)

    Google Scholar 

  29. Giurgiutiu, V., Rogers, C.: Recent advancements in the electro-mechanical (E/M) impedance method for structural health monitoring and NDE. In: The SPIE’s 5th Annual International Symposium on Smart Structures and Materials, Catamaran Resort Hotel, CA (1998). (Paper 3329-53)

    Google Scholar 

  30. Ghoshal, A., Harrison, J., Sundaresan, M., Hughes, D., Schulz, M., et al.: Damage detection testing on a helicopter flexbeam. J. Intell. Mater. Syst. Struct. 12, 315–330 (2001)

    Article  Google Scholar 

  31. Diamanti, K., Soutis, C.: Structural health monitoring techniques for aircraft structures. Prog. Aerosp. Sci. 46, 342–352 (2010)

    Article  Google Scholar 

  32. Alkahe, J., Oshman, Y., Rand, O.: Adaptive estimation methodology for helicopter blade structural damage detection. J. Guid. Control Dyn. 25, 1049–1057 (2002)

    Article  Google Scholar 

  33. Gelsema, E.: Diagnostic reasoning based on a genetic algorithm operating in a Bayesian belief network. Pattern Recognit. Lett. 17, 1047–1055 (1996)

    Article  Google Scholar 

  34. Lucas, P.: Bayesian model-based diagnosis. Int. J. Approx. Reason. 27, 99–119 (2001)

    Article  MATH  Google Scholar 

  35. Worden, K., Staszewski, W.J., Hensman, J.J.: Natural computing for mechanical systems research: a tutorial review. Mech. Syst. Signal Process. 25, 4–111 (2011)

    Article  Google Scholar 

  36. Simon, H.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, Upper Saddle River (2009)

    Google Scholar 

  37. Kevin, G.: An Introduction to Neural Networks. Taylor and Francis, London (2003)

    Google Scholar 

  38. Laurene, V.F.: Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  39. Mahapatra, D., Suresh, S., Omkar, S., Gopalakrishnan, S., et al.: Estimation of degraded laminate composite properties using acoustic wave propagation model and a reduction–prediction network. Eng. Comput. 22, 849–876 (2005)

    Article  MATH  Google Scholar 

  40. Garg, A.K., Mahapatra, D., Suresh, S., Gopalakrishnan, S., Omkar, S.: Estimation of composite damage model parameters using spectral finite element and neural network. Compos. Sci. Technol. 64, 2477–2493 (2004)

    Article  Google Scholar 

  41. Chakraborty, D.: Artificial neural network based delamination prediction in laminated composites. Mater. Des. 26, 1–7 (2005)

    Article  Google Scholar 

  42. Kang, J., Choi, B., Lee, H., Kim, J., Kim, K., et al.: Neural network application in fatigue damage analysis under multiaxial random loadings. Int. J. Fatigue 28, 132–140 (2006)

    Article  Google Scholar 

  43. Al-Assaf, El-Kadi: Fatigue life prediction of unidirectional glass fiber/epoxy composite laminae using neural networks. Compos. Struct. 53, 65–71 (2001)

    Article  Google Scholar 

  44. Oberholster, A., Heyns, P.: On-line fan blade damage detection using neural networks. Mech. Syst. Signal Process. 20, 78–93 (2006)

    Article  Google Scholar 

  45. Yuan, S., Wang, L., Peng, G.: Neural network method based on a new damage signature for structural health monitoring. Thin-Walled Struct. 43, 553–563 (2005)

    Article  Google Scholar 

  46. Rao, M., Srinivas, J., Murthy, B.: Damage detection in vibrating bodies using genetic algorithms. Comput. Struct. 82, 963–968 (2004)

    Article  Google Scholar 

  47. Nag, A., Mahapatra, D., Gopalakrishnan, S.: Identification of delamination in composite beams using spectral estimation and a genetic algorithm. Smart Mater. Struct. 11, 899–908 (2002)

    Article  Google Scholar 

  48. Xu, Y., Liu, G., Wu, Z.: Damage detection for composite plates using lamb waves and projection genetic algorithm. AIAA J. 40, 1860–1866 (2002)

    Article  Google Scholar 

  49. Meruane, V., Heylen, W.: An hybrid real genetic algorithm to detect structural damage using modal properties. Mech. Syst. Signal Process. 25, 1559–1573 (2011)

    Article  Google Scholar 

  50. Sawyer, J., Rao, S.: Structural damage detection and identification using fuzzy logic. AIAA J. 38, 2328–35 (2000)

    Article  Google Scholar 

  51. Dempsey, P., Afjeh, A.: Integrated oil debris and vibration gear damage detection technologies using fuzzy logic. J. Am. Helicopter Soc. 49, 109–116 (2004)

    Article  Google Scholar 

  52. Soh, C., Bhalla, S.: Calibration of piezo-impedance transducers for strength prediction and damage assessment of concrete. Smart Mater. Struct. 14, 671–684 (2005)

    Article  Google Scholar 

  53. Zhao, Z., Chen, C.: A fuzzy system for concrete bridge damage diagnosis. Comput. Struct. 80, 629–641 (2002)

    Article  Google Scholar 

  54. Lopez, I., Sarigul-Klijn, N.: A review of uncertainty in flight vehicle structural damage, monitoring, diagnosis and control: challenges and opportunities. Prog. Aerosp. Sci. 46, 247–273 (2010)

    Article  Google Scholar 

  55. Cordon, O.: A historical review of evolutionary learning methods for Mamdani-type fuzzy rule based systems: designing interpretable genetic fuzzy systems. Int. J. Approx. Reason. 52, 894–913 (2011)

    Article  Google Scholar 

  56. Jiang, S.F., Zhang, C.M., Zhang, S.: Two-stage structural damage detection using fuzzy neural networks and data fusion. Expert Syst. Appl. 38, 511–519 (2011)

    Article  Google Scholar 

  57. Ramu, S., Johnson, V.: Damage assessment of composite structures using fuzzy logic integrated neural-network approach. Comput. Struct. 57, 491–502 (1995)

    Article  MATH  Google Scholar 

  58. Wang, W., Ismail, F., Golnaraghi, F.: Neuro-fuzzy approach to gear system monitoring. IEEE Trans. Fuzzy Syst. 12, 710–723 (2004)

    Article  Google Scholar 

  59. Lee, E., Lam, H.: NN-based structural damage diagnosis using measured vibration data. In: Proceedings of the Knowledge-Based Intelligent Information and Engineering Systems. Part 3, vol. 3215, pp. 373–379 (2004)

    Chapter  Google Scholar 

  60. Zio, E., Gola, G.: A neuro-fuzzy technique for fault diagnosis and its application to rotating frequency. Reliab. Eng. Syst. Saf. 94, 78–88 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant M. Pawar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Pawar, P.M., Ganguli, R. (2011). Introduction. In: Structural Health Monitoring Using Genetic Fuzzy Systems. Springer, London. https://doi.org/10.1007/978-0-85729-907-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-907-9_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-906-2

  • Online ISBN: 978-0-85729-907-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics