Skip to main content

Nanotechnology Achievements

  • Chapter
  • First Online:
Eco-efficient Construction and Building Materials

Abstract

Nanotechnology involves the study at microcospic scale and has the potential to be the key to a brand new world in the field of construction and building materials. Although replication of natural systems is one of the most promising areas of this technology, scientists are still trying to grasp their astonishing complexities. This chapter covers the nanoscale analysis of Portland cement hydration products and the use of nanoparticles to increase the strength and durability of cementitious composites. It also covers the development of self-cleaning materials and materials that reduce air pollutants through photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen M, Molin M (2007) NanoByg- a survey of nanoinnovation in Danish construction. ISBN 978-87-550-3589-8, Rise National Laboratory, Technical University of Denmark

    Google Scholar 

  • Auvinen J, Wirtanen L (2008) The influence of photocatalytic interior paints on indoor air quality. Atmosp Environ 42:4101–4112. doi:10.1016/j.atmosenv.2008.01.031

    Article  Google Scholar 

  • Balaguru P, Chong K (2006) Nanotechnology and concrete: Research opportunities. ACI FALL 2006 Convention, Nanotechnology of Concrete: Recent Developments and Future Perspectives, Code 76031.ACI

    Google Scholar 

  • Ballari M, Hunger M, Husken G, Brouwers H (2010) NO x photocatalytic degradation employing concrete pavement containing titanium dioxide. Appl Catal B: Environ 95:245–254. doi:10.1016/j.apcatb.2010.01.002

    Article  Google Scholar 

  • Barnes D (1970) Coral skeletons: An explanation of their growth and structure. Science 170:1305–1308. doi:10.1126/science.170.3964.1305

    Article  Google Scholar 

  • Beeldens A (2007) Air purification by road materials: results of the test project. In: Baglione P, Cassar I (ed) RILEM Int. Symp. on photocatalysis environment and construction materials, 187–194, Italy

    Google Scholar 

  • Benedix R, Dehn F, Quaas J, Orgass M (2000) Application of titanium dioxide photocatalysis to create self-cleaning building materials. Lacer 5:158–168

    Google Scholar 

  • Bolashikov Z, Melikov A (2009) Methods for air cleaning and protection of building occupants from airborne pathogens. Build Environ 44:1378–1385. doi:10.1016/j.buildenv.2008.09.001

    Article  Google Scholar 

  • Calabria J, Vasconcelos W, Daniel D, Chater R, Mcphail D, Boccaccini A (2010) Synthesis of sol-gel titania bactericidal coatings on adobe brick. Constr Build Mater 24:384–389. doi:10.1016/j.conbuildmat.2009.08.020

    Article  Google Scholar 

  • Cassar I, Pepe C (1997) Paving tile comprising an hydraulic binder and photocatalytic particles. EP-patent 1600430A1, Italcementi, Italy

    Google Scholar 

  • Cassar L, Pepe C, Tognon G, Guerrini G, Amadelli R (2003) White cement for architectural concrete possessing photocatalytic properties. 11th International Congress on the Chemestry of Cement, Durban

    Google Scholar 

  • Castano V, Rodriguez R (2003) A nanotechnology approach to high performance anti-graffiti coatings. Presentation at the Nanotechnology in Crime Prevention Conference, London

    Google Scholar 

  • Chaipanich A, Nochaya T, Wongkeo W, Torkittikul P (2010) Compressive strength and microstructure of carbon nanotubes-fly ash cement composites. Mater Science Eng A527:1063–1076. doi:10.1016/j.msea.2009.09.039

    Article  Google Scholar 

  • Chen L, Lin D (2009) Applications of sewage sludge ash and nano-SiO2 to manufacture tile as construction material. Const Build Mater 23:3312–3320. doi:10.1016/j.conbuildmat.2009.06.049

    Article  Google Scholar 

  • Chen J, Poon C (2009a) Photocatalytic construction and building materials: from fundamentals to applications. Build Environ 44: 1899–1906. doi:10.1016/j.buildenv.2009.01.002

    Google Scholar 

  • Chen J, Poon C (2009b) Photocatalytic activity of titanium dioxide modified concrete materials—Influence of utilizing recycled glass cullets as aggregates. J Environ Manag 90: 3436–3442. doi:10.1016/j.jenvman.2009.05.029

    Google Scholar 

  • Chen F, Yang X, Wu Q (2009) Antifungal capability of TiO2 coated film on moist wood. Build Environ 44:1088–1093. doi:10.1016/j.buildenv.2008.07.018

    Article  MathSciNet  Google Scholar 

  • Chen F, Yang X, Mak H, Chan D (2010) Photocatalytic oxidation for antimicrobial control in built environment: A brief literature overview. Build Environ 45:1747–1754. doi:10.1016/j.buildenv.2010.01.024

    Article  Google Scholar 

  • Cho M, Chung H, Choi W, Yoon J (2004) Linear correlation between inactivation of E.coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38: 1069–1077. doi:10.1016/j.buildenv.2010.01.024

    Google Scholar 

  • Constantinides G, Ulm F (2007) The nanogranular nature of C–S–H. J Mech Phys Sol 55:64–90. doi:10.1016/j.jmps.2006.06.003

    Article  MATH  Google Scholar 

  • Constantinides G, Ulm F, Vliet K (2003) On the use of nanoindentation for cementitious materials. Mater Struct 36:191–196. doi:10.1016/j.buildenv.2010.01.024

    Google Scholar 

  • Dejong M, Ulm F (2007) The nanogranular behavior of C–S–H at elevated temperatures (up to 700°C). Cem Concr Res 37:1–12. doi:10.1016/j.cemconres.2006.09.006

    Article  Google Scholar 

  • Demeestere K, Dewulf J, De Witte B, Beeldens A, Van Langenhove H (2008) Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Build Environ 43:406–414. doi:10.1016/j.buildenv.2007.01.016

    Article  Google Scholar 

  • Diamanti M, Ormellese M, Pedeferri M (2008) Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide. Cem Concr Res 38:1343–1353. doi:10.1016/j.cemconres.2008.07.003

    Article  Google Scholar 

  • Djebbar K, Sehili T (1998) Kinetics of Heterogeneous photocatalytic decomposition of 2, 4-Dichlorophenoxyacetic acid over TiO2 and ZnO in aqueous solution. Pest Sci 54:269–276. doi:10.1016/j.jcis.2005.08.007

    Article  Google Scholar 

  • Drexler K (1981) Molecular engineering: An approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci USA 78:5275–5278

    Article  Google Scholar 

  • Dunnill C, Ziken Z, Pratten J, Wilson M, Morgan D, Parkin I (2009) Enhanced photocatalytic activity under visible light in N-doped TiO2 thin film produced by APCVD preparations using t-butylamine as a nitrogen source and their potential for antibacterial films. J Photochem Photobiol A: Chem 207:244–253. doi:10.1016/j.jphotochem.2009.07.024

    Article  Google Scholar 

  • Feynman R (1960) There’s plenty of room at the bottom (reprint from the speech given at the annual meeting of the West Coast section of the American Physical Society). Eng Sci 23:22–36

    Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nat 238:37–38. doi:10.1038/238037a0

    Article  Google Scholar 

  • Fujishima A, Hashimoto K, Watanabe T (1999) Photocatalysis. Fundamentals and its Applications, BCK Inc, Japan

    Google Scholar 

  • Fujishima A, Zhang X, Tryk D (2008) TiO2 photocatalys and related surface phenomena. Surface Sci Reports 63:515–582. doi:10.1016/j.surfrep.2008.10.001

    Article  Google Scholar 

  • Gaitero J (2008) Multi-scale study of the fibre matrix interface and calcium leaching in high performance concrete. PhD Thesis, Centre for Nanomaterials Applications in Construction of Labein-Tecnalia, Spain

    Google Scholar 

  • Gaitero J, Zhu W, Campillo I (2009) Multi-scale study of calcium leaching in cement pastes with silica nanoparticles. Nanotechnology in Construction 3, Springer, Berlin, Heidelberg

    Google Scholar 

  • Gdoutos-Konsta M, Metaxa Z, Shah S (2010) Highly dispersed carbon nanotube reinforced cement based materials. Cem Concr Res 40:1052–1059. doi:10.1016/j.cemconres.2010.02.015

    Article  Google Scholar 

  • Geyer R, Del Maestro C, Rohloff A (2009) Greenhouse gas footprint analysis of the Calera process. University of California, California

    Google Scholar 

  • Guerrini G, Peccati E (2007) Photocatalytic cementitious roads for depollution. In: Baglione P, Cassar I (ed) RILEM Int. Symp. on photocatalysis environment and construction materials, 179–186, Italy

    Google Scholar 

  • Gurol M (2006) Photo-catalytic construction materials and reduction in air pollutants. Sacramento State Center for California Studies, The California State University. http://www.csus.edu/calst/government_affairs/reports/PHOTO-CATALYTIC.pdf. Accessed 3 July 2011.

  • Harrington M, Masic A, Holten-Andersen N (2010) Iron-clad fibers: A metal-based biological strategy for hard flexible coatings. Sci 216–220. doi: 10.1126/science.1181044

  • Hassan M, Dylla H, Mohammad L, Rupnow T (2010) Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement. Const Build Mater 24:1456–1461. doi:10.1016/j.conbuildmat.2010.01.009

    Article  Google Scholar 

  • Hedlund J, Berglin M, Sellborn A, Andersson M, Delage L, Elwing H (2004) Marine adhesives as candidates for new biomaterial. Transactions—7th World Biomaterials Congress

    Google Scholar 

  • Herrmann J, Duchamp C, Karkmaz M, Hoai B, Lachheb H, Puzenat E, Guillard C (2007) Environmental green chemistry as defined by photocatalysis. J Hazard Mater 146:624–629. doi:10.1016/j.jhazmat.2007.04.095

    Article  Google Scholar 

  • Holcomb M (2010) Coral calcification: insights from inorganic experiments and coral responses to environmental variables. PhD Thesis, Massachusetts Institute of Technology MIT, Cambridge

    Google Scholar 

  • Huang Z, Maness P, Blakem D, Wolfrum E, Smolinski S, Jacoby W (2000) Bactericidal mode of titanium dioxide photocatalysis. J Photochem Photobiol A:Chem 130:163–170. doi:10.1016/S1010-6030(99)00205-1

    Article  Google Scholar 

  • Husken G, Hunger M, Brouwers H (2009) Experimental study of photocatalytic concrete products for air purification. Build Environ 44:2463–2474. doi:10.1016/j.buildenv.2009.04.010

    Article  Google Scholar 

  • Kamino K (2010) Molecular design of barnacle cement in comparison with those of mussel and tubeworm. J Adhesion 86:96–110

    Article  Google Scholar 

  • Khandeparker L, Chandrashekhar A (2007) Underwater adhesion: The barnacle way. Int J Adhesion Adhesives 27:165–172. doi:10.1016/j.ijadhadh.2006.03.004

    Article  Google Scholar 

  • Kolarik B, Wargocki P, Skorek-Osikowska A, Wisthaler A (2010) The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods. Buil Environ 45:1434–1440. doi:10.1016/j.buildenv.2009.12.006

    Article  Google Scholar 

  • Kuhn K, Chaberny I, Massholder K, Stickler M, Benz V, Sootag H, Erdinger L (2003) Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 53:71–77. doi:10.1016/S0045-6535(03)00362-X

    Article  Google Scholar 

  • Lee S, Kriven W (2005) Synthesis and hydration study of Portland cement components prepared by organic steric entrapment method. Mater Struct 38:87–92. doi:10.1007/BF02480579

    Article  Google Scholar 

  • Lee S, Pippel E, Gosele U, Dresbach C, Qin Y, Chandran C, Brauniger T, Hause G, Knez M (2009) Greatly increased toughness of infiltrated spider silk. Sci 324:488–492. doi:10.1126/science.1168162

    Article  Google Scholar 

  • Li H, Xiao H, Ou J (2004) A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cem Concr Res 34: 435–438. doi:10.1016/j.cemconres.2003.08.025

    Google Scholar 

  • Lin D, Lin K, Chang W, Luo H, Cai M (2008) Improvements of nano-SiO2 on sludge/fly ash mortar. Waste Manag 28:1081–1087. doi:10.1016/j.wasman.2007.03.023

    Article  Google Scholar 

  • Maggos T, Plassais A, Bartzis J, Vasilakos C, Moussiopoulos N, Bonafous L (2008) Photocatalytic degradation of NO X in a pilot street configuration using TiO2-mortar panels. Environ Monitor Assess 136:35–44. doi:10.1007/s10661-007-9722-2

    Article  Google Scholar 

  • Maier W, Nilsson C, Holzer M, Lind J, Rosebom K (2005) Photocatalytic plaster for indoor air purification. 1st National Congress of Construction Mortars, APFAC, Lisbon

    Google Scholar 

  • Makowski A, Wardas W (2001) Photocatalytic degradation of toxins secreted to water by cyanobacteria and unicellular algae and photocatalytic degradation of the cells of selected microorganisms. Current Topics in Biophysics 25: 19–25. www.nanoes.com.hk/…/Water/Photocatalytic_degration-of-toxins.pdf

  • Man S (2006) Nanotechnology and construction. Nanoforum report, Institute of Nanotechnology

    Google Scholar 

  • Meyers M, Lim C, Nizam B, Tan E, Seki Y, Mckittrick J (2009) The role of organic intertile layer in abalone nacre. Mater Sci Eng C29:2398–2410. doi:10.1016/j.msec.2009.07.005

    Google Scholar 

  • Mitchell S. (2009) Capturing carbon. Concrete Construction. World of Concrete 54:104

    Google Scholar 

  • Mojumdar S, Raki L (2006) Synthesis, thermal and structural characterization of nanocomposites for potential applications in construction. J Therm Anal Calorimetry 86: 651–657. 10.1007/s10973-006-7720-1

  • Mondal P (2008) Nanomechanical properties of cementitious materials. PhD Thesis in Civil and Environment Engineering. Northwestern University, Illinois

    Google Scholar 

  • Murata Y, Tawara H, Obata H, Murata K (1997) NO x -cleaning paving block. European patent 0 786 283 A1. Mitsubhisi Materials Corporation, Japan

    Google Scholar 

  • Nasibulin A, Shandakov S, Nasibulina L, Cwirzen A, Mudimela P, Habermehl-Cwirzen K, Grishin D, Gavrilov Y, Malm J, Tapper U, Tian Y, Penttala V, Karppinen M, Kauppinen E (2009) A novel cement-based hybrid material. New J Physics 11, nº 023013. 10.1088/1367-2630/11/2/023013

  • NSF (2001) Societal implications of nanoscience and nanotecnology, USA

    Google Scholar 

  • Pellenq R, Kushima A, Shahsavar R, Vliet K, Buehler M, Yip S, Ulm F (2009) A realistic molecular model of cement hydrates. In: Bazant Z (ed), Northwestern University, PNAS

    Google Scholar 

  • PICADA (2006) Photocatalytic innovative coverings applications for depollution assessment. innovative facade with de-soiling and de-polluting properties. EC GRD1-2001-00669

    Google Scholar 

  • Poon C, Cheung E (2007) NO removal efficiency of photocatalytic paving blocks prepared with recycled materials. Constr Build Materials 21:1746–1753. doi:10.1016/j.conbuildmat.2006.05.018

    Article  Google Scholar 

  • Porro A, Dolado J (2005) Overview of concrete modeling. Proc International conference on applications of nanotechnology in concrete design, pp 35–45

    Google Scholar 

  • Porro A, Dolado J, Campillo I, Erkizia E, De Miguel Y, De Ybarra Y, Ayuela A (2005) Effects of nanosilica additions on cement pastes. Proc International conference on applications of nanotechnology in concrete design, pp 87–96

    Google Scholar 

  • Porter D, Vollrath F (2007) Nanoscale toughness of spider silk. Nanotoday 2, 3

    Google Scholar 

  • Qing Y, Zenan Z, Deyu K, Rongshen C (2008) Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr Build Mat 21:539–545. doi:10.1016/j.conbuildmat.2005.09.001

    Article  Google Scholar 

  • Ramirez A, Demeestere K, De Belie N, Mantyla T, Levanen E (2010) Titanium dioxide coated cementitious materials for air purifying purposes: Preparation, characterization and toluene removal potential. Build Environ 45:832–838. doi:10.1016/j.buildenv.2009.09.003

    Article  Google Scholar 

  • Reboux G, Bellanger A, Roussel S, Grenouillet F, Millon L (2010) Moulds in dwellings: Health risks and involved species. Rev Mal Respir 27:169–179

    Google Scholar 

  • Ruot B, Plassais A, Olive F, Guillot L, Bonafous L (2009) TiO2-containing cement pastes and mortars: Measurements of the photocatalytic efficiency using rhodamine B-based colourimetric test. Sol Energy 83:1794–1801. doi:10.1016/j.solener.2009.05.017

    Article  Google Scholar 

  • Saepurahman M, Chong F (2010) Preparation and characterization of tungsten-loaded titanium dioxide photocatalyst for enhanced dye degradation. J Hazard Mater 176:451–458. doi:10.1016/j.jhazmat.2009.11.050

    Article  Google Scholar 

  • Saito T, Iwase J, Horic J, Morioka T (1992) Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci. J Photochem Photobiol B: Biol 14:369–379. doi:10.1016/1011-1344(92)85115-B

    Article  Google Scholar 

  • Santucci R, Meunier O, Ott M, Herrmann F, Freyd A, De Blay F (2007) Fungic contamination of residence: 10 years assessment of analyses. Rev Franc d’Allergol Immun Clin 47:402–408

    Google Scholar 

  • Seven O, Dindar B, Aydemir S, Metin D, Ozinel M, Icli S (2004) Solar photocatalytical disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust. J Photochem Phototobiol A: Chem 165:103–107. doi:10.1016/j.jphotochem.2004.03.005

    Article  Google Scholar 

  • Sobolev K, Ferrada-Gutierrez M (2005) How nanotechnology can change the concrete world: part 2. Am Ceram Soc Bull 84: 16–19. www.cognoscibletechnologies.com/…/How-Nanotechnology-Can-Change-the-concrete-world-I.pdf

    Google Scholar 

  • Sobolev K, Flores I, Hermosillo R, Torres-Martinez L (2008) Nanomaterials and nanotechnology for high-performance cement composites. American Concrete Institute, ACI Special Publication 254: 93–120. https://pantherfile.uwm.edu/sobolev/www/…/7-Sobolev-ACI-F.pdf

  • Song H, Jiang H, Liu X, Meng G (2006) Efficient degradation of organic pollutant with Wox modified nano TiO2 under visible radiation. J Photochemical Phototobiol A: Chem 181:421–428. doi:10.1016/j.jphotochem.2006.01.001

    Article  Google Scholar 

  • Strini A, Cassese S, Schiavi L (2005) Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Appl Catal B: Environ 61:90–97. doi:10.1016/j.apcatb.2005.04.009

    Article  Google Scholar 

  • Taniguchi N (1974) On the basic concept of ‘Nano-Technology’. Proc. Intl Conf Prod Eng Tokyo, Part II, Japan Society of Precision Engineering 2:18–23

    Google Scholar 

  • Vera-Agullo J, Chozas-Ligero V, Portillo-Rico D, Garcia-Casas M, Gutierrez-Martinez A, Mieres-Royo J, Gravalos-Moreno J (2009) Mortar and concrete reinforced with nanomaterials. Nanotechnology in Construction 3, Springer, Berlin Heidelberg

    Google Scholar 

  • Vohra A, Goswami D, Deshpande D, Block S (2006) Enhanced photocatalytic disinfection of indoor air. Appl Catal B: Environ 65:57–65. doi:10.1016/j.apcatb.2005.10.025

    Article  Google Scholar 

  • Wang S, Ang H, Tade M (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environ Int 42:1843–1850. doi:10.1016/j.envint.2007.02.011

    Google Scholar 

  • Wiszniewska M, Walusiak-Skorupa J, Gutarowska B, Krakowiak A, PaÅ‚czyÅ„ski C (2009) Is the risk of allergic hypersensitivity to fungi increased by indoor exposure to moulds? Int J Occup Med Environ Health 22:343–354

    Article  Google Scholar 

  • Yu J (2003) Deactivation and regeneration of environmentally exposed titanium dioxide based products. Testing report, Nº E183413, Chinese University of Hong Kong

    Google Scholar 

  • Zhao J, Yang X (2003) Photocatalytic oxidation for indoor air purification: a literature review. Build Enviro 38:645–654. doi:10.1016/S0360-1323(02)00212-3

    Article  Google Scholar 

  • Zhu W, Bartos P, Porro A (2004) Application of nanotechnology in construction. Summary of a state-of-the-art report. RILEM TC 197-NCM. Materials Struct 37:649–658. 10.1007/BF02483294

  • Zyska B (2001) Fungi in indoor air in European Countries. Mikologia Lekarska 8:127–140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Pacheco Torgal .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Torgal, F.P., Jalali, S. (2011). Nanotechnology Achievements. In: Eco-efficient Construction and Building Materials. Springer, London. https://doi.org/10.1007/978-0-85729-892-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-892-8_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-891-1

  • Online ISBN: 978-0-85729-892-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics