Advertisement

Oogenesis pp 289-306 | Cite as

The Choreography of Fertilization

  • Giovanni CoticchioEmail author
  • Fausta Brambillasca
Chapter

Abstract

At fertilization, a continuum is established between the final phases of oogenesis and the formation of a new individual. In mammals, the two processes are overlapped. The fertilizing spermatozoon represents the paternal contribution to zygote constitution and at the same time the trigger for the completion of meiosis. Oocytes can mimic fertilization, being able to recapitulate autonomously many of the events of early embryonic development. However, without the sperm contribution development to term cannot occur. The sperm, in fact, carries not only the paternal chromosomes, but also cytoskeletal elements and biochemical cues that are essential to complement and regulate the oocyte cellular legacy. Therefore, oocyte-sperm fusion creates a unique cellular machinery whose regulation in time and space influences the long term destiny of the ensuing embryo.

Keywords

Oocytes Activation Fertilization Pronuclei Development 

References

  1. 1.
    Van Soom A, Tanghe S, De Pauw I, Maes D, de Kruif A. Function of the cumulus oophorus before and during mammalian fertilization. Reprod Domest Anim. 2002;37(3):144–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A. Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev. 2002;61(3):414–24.PubMedCrossRefGoogle Scholar
  3. 3.
    Salustri A, Garlanda C, Hirsch E, De Acetis M, Maccagno A, Bottazzi B, et al. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development. 2004;131(7):1577–86.PubMedCrossRefGoogle Scholar
  4. 4.
    Austin CR. Syngamy in a mammalian egg study by phasecontrast microscopy. Med Biol Illus. 1960;10:63.PubMedGoogle Scholar
  5. 5.
    Hunter RH. Sperm:egg ratios and putative molecular signals to modulate gamete interactions in polytocous mammals. Mol Reprod Dev. 1993;35(3):324–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Tamba S, Yodoi R, Segi-Nishida E, Ichikawa A, Narumiya S, Sugimoto Y. Timely interaction between prostaglandin and chemokine signaling is a prerequisite for successful fertilization. Proc Natl Acad Sci USA. 2008;105(38):14539–44.PubMedCrossRefGoogle Scholar
  7. 7.
    Ito M, Smith TT, Yanagimachi R. Effect of ovulation on sperm transport in the hamster oviduct. J Reprod Fertil. 1991;93(1):157–63.PubMedCrossRefGoogle Scholar
  8. 8.
    Primakoff P, Myles DG. Penetration, adhesion, and fusion in mammalian sperm-egg interaction. Science. 2002;296(5576):2183–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Glabe CG, Vacquier VD. Species specific agglutination of eggs by bindin isolated from sea urchin sperm. Nature. 1977;267(5614):836–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Marengo SR. Maturing the sperm: unique mechanisms for modifying integral proteins in the sperm plasma membrane. Anim Reprod Sci. 2008;105(1–2):52–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, et al. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development. 1995;121(4):1139–50.PubMedGoogle Scholar
  12. 12.
    Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development. 1995;121(4):1129–37.PubMedGoogle Scholar
  13. 13.
    Liu DY, Liu ML, Baker HWG. Enhancement of sperm-zona pellucida (ZP) binding capacity by activation of protein kinase A and C pathways in certain infertile men with defective sperm-ZP binding. Hum Reprod. 2009;24(1):20–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Thaler CD, Cardullo RA. The initial molecular interaction between mouse sperm and the zona pellucida is a complex binding event. J Biol Chem. 1996;271(38):23289–97.PubMedCrossRefGoogle Scholar
  15. 15.
    Cohen G, Rubinstein S, Gur Y, Breitbart H. Crosstalk between protein kinase A and C regulates ­phospholipase D and F-actin formation during sperm ­capacitation. Dev Biol. 2004;267(1):230–41.PubMedCrossRefGoogle Scholar
  16. 16.
    Wassarman PM. Zona pellucida glycoproteins. J Biol Chem. 2008;283(36):24285–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Wassarman PM, Jovine L, Litscher ES. Mouse zona pellucida genes and glycoproteins. Cytogenet Genome Res. 2004;105(2–4):228–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Bleil JD, Greve JM, Wassarman PM. Identification of a secondary sperm receptor in the mouse egg zona pellucida: role in maintenance of binding of acrosome-reacted sperm to eggs. Dev Biol. 1988;128(2):376–85.PubMedCrossRefGoogle Scholar
  19. 19.
    Nixon B, Asquith KL, John Aitken R. The role of molecular chaperones in mouse sperm-egg interactions. Mol Cell Endocrinol. 2005;240(1–2):1–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Dun MD, Smith ND, Baker MA, Lin M, Aitken RJ, Nixon B. The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-oocyte interaction. J Biol Chem. 2011;286(42):36875–87.PubMedCrossRefGoogle Scholar
  21. 21.
    Nixon B, Aitken RJ, McLaughlin EA. New insights into the molecular mechanisms of sperm-egg interaction. Cell Mol Life Sci. 2007;64(14):1805–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Abou-Haila A, Tulsiani DR. Mammalian sperm acrosome: formation, contents, and function. Arch Biochem Biophys. 2000;379(2):173–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Bedford JM, Moore HD, Franklin LE. Significance of the equatorial segment of the acrosome of the spermatozoon in eutherian mammals. Exp Cell Res. 1979;119(1):119–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Talbot P, Chacon RS. Ultrastructural observations on binding and membrane fusion between human sperm and zona pellucida-free hamster oocytes. Fertil Steril. 1982;37(2):240–8.PubMedGoogle Scholar
  25. 25.
    Cuasnicú PS, Ellerman DA, Cohen DJ, Busso D, Morgenfeld MM, Da Ros VG. Molecular mechanisms involved in mammalian gamete fusion. Arch Med Res. 2001;32(6):614–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Evans JP. The molecular basis of sperm-oocyte membrane interactions during mammalian fertilization. Hum Reprod Update. 2002;8(4):297–311.PubMedCrossRefGoogle Scholar
  27. 27.
    Lum L, Blobel CP. Evidence for distinct serine protease activities with a potential role in processing the sperm protein fertilin. Dev Biol. 1997;191(1):131–45.PubMedCrossRefGoogle Scholar
  28. 28.
    Waters SI, White JM. Biochemical and molecular characterization of bovine fertilin alpha and beta (ADAM 1 and ADAM 2): a candidate sperm-egg binding/fusion complex. Biol Reprod. 1997;56(5):1245–54.PubMedCrossRefGoogle Scholar
  29. 29.
    Primakoff P, Hyatt H, Tredick-Kline J. Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J Cell Biol. 1987;104(1):141–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Blobel CP, Wolfsberg TG, Turck CW, Myles DG, Primakoff P, White JM. A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature. 1992;356(6366):248–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Lemaire L, Johnson KR, Bammer S, Petry P, Ruddle FH, Heinlein UA. Chromosomal assignment of three novel mouse genes expressed in testicular cells. Genomics. 1994;21(2):409–14.PubMedCrossRefGoogle Scholar
  32. 32.
    Barker HL, Perry AC, Jones R, Hall L. Sequence and expression of a monkey testicular transcript encoding tMDC I, a novel member of the metalloproteinase-like, disintegrin-like, cysteine-rich (MDC) protein family. Biochim Biophys Acta. 1994;1218(3):429–31.PubMedCrossRefGoogle Scholar
  33. 33.
    Grzmil P, Kim Y, Shamsadin R, Neesen J, Adham IM, Heinlein UA, et al. Human cyritestin genes (CYRN1 and CYRN2) are non-functional. Biochem J. 2001;357(Pt 2):551–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Cho C, Bunch DO, Faure JE, Goulding EH, Eddy EM, Primakoff P, et al. Fertilization defects in sperm from mice lacking fertilin beta. Science. 1998;281(5384):1857–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Nishimura H, Cho C, Branciforte DR, Myles DG, Primakoff P. Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev Biol. 2001;233(1):204–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Cho C, Primakoff P, White JM, Myles DG. Chromosomal assignment of four testis-expressed mouse genes from a new family of transmembrane proteins (ADAMs) involved in cell-cell adhesion and fusion. Genomics. 1996;34(3):413–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Shamsadin R, Adham IM, Nayernia K, Heinlein UA, Oberwinkler H, Engel W. Male mice deficient for germ-cell cyritestin are infertile. Biol Reprod. 1999;61(6):1445–51.PubMedCrossRefGoogle Scholar
  38. 38.
    Evans JP. Sperm disintegrins, egg integrins, and other cell adhesion molecules of mammalian gamete plasma membrane interactions. Front Biosci. 1999;4:D114–31.PubMedCrossRefGoogle Scholar
  39. 39.
    Almeida EA, Huovila AP, Sutherland AE, Stephens LE, Calarco PG, Shaw LM, et al. Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor. Cell. 1995;81(7):1095–104.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen H, Sampson NS. Mediation of sperm-egg fusion: evidence that mouse egg alpha6beta1 integrin is the receptor for sperm fertilinbeta. Chem Biol. 1999;6(1):1–10.PubMedCrossRefGoogle Scholar
  41. 41.
    Takahashi Y, Bigler D, Ito Y, White JM. Sequence-specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of beta1 ­integrin-associated proteins CD9, CD81, and CD98. Mol Biol Cell. 2001;12(4):809–20.PubMedGoogle Scholar
  42. 42.
    Miller BJ, Georges-Labouesse E, Primakoff P, Myles DG. Normal fertilization occurs with eggs lacking the integrin alpha6beta1 and is CD9-dependent. J Cell Biol. 2000;149(6):1289–96.PubMedCrossRefGoogle Scholar
  43. 43.
    Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C. Severely reduced female fertility in CD9-deficient mice. Science. 2000;287(5451):319–21.PubMedCrossRefGoogle Scholar
  44. 44.
    Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, et al. The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat Genet. 2000;24(3):279–82.PubMedCrossRefGoogle Scholar
  45. 45.
    Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, et al. Requirement of CD9 on the egg plasma membrane for fertilization. Science. 2000;287(5451):321–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Wong GE, Zhu X, Prater CE, Oh E, Evans JP. Analysis of fertilin alpha (ADAM1)-mediated sperm-egg cell adhesion during fertilization and identification of an adhesion-mediating sequence in the disintegrin-like domain. J Biol Chem. 2001;276(27):24937–45.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhu X, Evans JP. Analysis of the roles of RGD-binding integrins, alpha(4)/alpha(9) integrins, alpha(6) integrins, and CD9 in the interaction of the fertilin beta (ADAM2) disintegrin domain with the mouse egg membrane. Biol Reprod. 2002;66(4):1193–202.PubMedCrossRefGoogle Scholar
  48. 48.
    Rochwerger L, Cuasnicú PS. Redistribution of a rat sperm epididymal glycoprotein after in vitro and in vivo capacitation. Mol Reprod Dev. 1992;31(1):34–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Rochwerger L, Cohen DJ, Cuasnicú PS. Mammalian sperm-egg fusion: the rat egg has complementary sites for a sperm protein that mediates gamete fusion. Dev Biol. 1992;153(1):83–90.PubMedCrossRefGoogle Scholar
  50. 50.
    Cuasnicú PS, González Echeverría F, Piazza AD, Cameo MS, Blaquier JA. Antibodies against epididymal glycoproteins block fertilizing ability in rat. J Reprod Fertil. 1984;72(2):467–71.PubMedCrossRefGoogle Scholar
  51. 51.
    Jaffe LA, Gould-Somero M, Holland LZ. Studies of the mechanism of the electrical polyspermy block using voltage clamp during cross-species fertilization. J Cell Biol. 1982;92(3):616–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Maluchnik D, Borsuk E. Sperm entry into fertilised mouse eggs. Zygote. 1994;2(2):129–31.PubMedCrossRefGoogle Scholar
  53. 53.
    Sengoku K, Tamate K, Horikawa M, Takaoka Y, Ishikawa M, Dukelow WR. Plasma membrane block to polyspermy in human oocytes and preimplantation embryos. J Reprod Fertil. 1995;105(1):85–90.PubMedCrossRefGoogle Scholar
  54. 54.
    McAvey BA, Wortzman GB, Williams CJ, Evans JP. Involvement of calcium signaling and the actin cytoskeleton in the membrane block to polyspermy in mouse eggs. Biol Reprod. 2002;67(4):1342–52.PubMedCrossRefGoogle Scholar
  55. 55.
    Zuccotti M, Yanagimachi R, Yanagimachi H. The ability of hamster oolemma to fuse with spermatozoa: its acquisition during oogenesis and loss after fertilization. Development. 1991;112(1):143–52.PubMedGoogle Scholar
  56. 56.
    Horvath PM, Kellom T, Caulfield J, Boldt J. Mechanistic studies of the plasma membrane block to polyspermy in mouse eggs. Mol Reprod Dev. 1993;34(1):65–72.PubMedCrossRefGoogle Scholar
  57. 57.
    Sengoku K, Tamate K, Takaoka Y, Horikawa M, Goishi K, Okada R, et al. Requirement of sperm-oocyte plasma membrane fusion for establishment of the plasma membrane block to polyspermy in human pronuclear oocytes. Mol Reprod Dev. 1999;52(2):183–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Redkar AA, Olds-Clarke PJ. An improved mouse sperm-oocyte plasmalemma binding assay: studies on characteristics of sperm binding in medium with or without glucose. J Androl. 1999;20(4):500–8.PubMedGoogle Scholar
  59. 59.
    Wolf DE, Edidin M, Handyside AH. Changes in the organization of the mouse egg plasma membrane upon fertilization and first cleavage: indications from the lateral diffusion rates of fluorescent lipid analogs. Dev Biol. 1981;85(1):195–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Wolf DE, Ziomek CA. Regionalization and lateral ­diffusion of membrane proteins in unfertilized and ­fertilized mouse eggs. J Cell Biol. 1983;96(6):1786–90.PubMedCrossRefGoogle Scholar
  61. 61.
    Gardner AJ, Evans JP. Mammalian membrane block to polyspermy: new insights into how mammalian eggs prevent fertilisation by multiple sperm. Reprod Fertil Dev. 2006;18(1–2):53–61.PubMedCrossRefGoogle Scholar
  62. 62.
    Helbrunn LV, Young LA. The action of ultra-violet rays on Arbacia egg protoplasm. Physiol Zool. 1930; 30(3):330–341.Google Scholar
  63. 63.
    Steinhardt RA, Epel D, Carroll EJ, Yanagimachi R. Is calcium ionophore a universal activator for unfertilised eggs? Nature. 1974;252(5478):41–3.PubMedCrossRefGoogle Scholar
  64. 64.
    Gilkey JC, Jaffe LF, Ridgway EB, Reynolds GT. A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J Cell Biol. 1978;76(2):448–66.PubMedCrossRefGoogle Scholar
  65. 65.
    Steinhardt R, Zucker R, Schatten G. Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol. 1977;58(1):185–96.PubMedCrossRefGoogle Scholar
  66. 66.
    Miyazaki S, Hashimoto N, Yoshimoto Y, Kishimoto T, Igusa Y, Hiramoto Y. Temporal and spatial dynamics of the periodic increase in intracellular free calcium at fertilization of golden hamster eggs. Dev Biol. 1986;118(1):259–67.PubMedCrossRefGoogle Scholar
  67. 67.
    Miyazaki S, Shirakawa H, Nakada K, Honda Y. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs. Dev Biol. 1993;158(1):62–78.PubMedCrossRefGoogle Scholar
  68. 68.
    Miyazaki S, Yuzaki M, Nakada K, Shirakawa H, Nakanishi S, Nakade S, et al. Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol 1,4,5-trisphosphate receptor in fertilized hamster eggs. Science. 1992;257(5067):251–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Brind S. Inositol 1,4,5-trisphosphate receptors are downregulated in mouse oocytes in response to sperm or adenophostin A but not to increases in intracellular Ca2+ or egg activation. Dev Biol. 2000;223(2):251–65.PubMedCrossRefGoogle Scholar
  70. 70.
    Xu Z. Maturation-associated increase in IP3 receptor type 1: role in conferring increased IP3 sensitivity and Ca2+ oscillatory behavior in mouse eggs. Dev Biol. 2003;254(2):163–71.PubMedCrossRefGoogle Scholar
  71. 71.
    Ciapa B, Pesando D, Wilding M, Whitaker M. Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels. Nature. 1994;368(6474):875–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Stith BJ, Espinoza R, Roberts D, Smart T. Sperm increase inositol 1,4,5-trisphosphate mass in Xenopus laevis eggs preinjected with calcium buffers or heparin. Dev Biol. 1994;165(1):206–15.PubMedCrossRefGoogle Scholar
  73. 73.
    Swann K. A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs. Development. 1990;110(4):1295–302.PubMedGoogle Scholar
  74. 74.
    Wu H, Smyth J, Luzzi V, Fukami K, Takenawa T, Black SL, et al. Sperm factor induces intracellular free calcium oscillations by stimulating the phosphoinositide pathway. Biol Reprod. 2001;64(5):1338–49.PubMedCrossRefGoogle Scholar
  75. 75.
    Swann K. The cytosolic sperm factor that triggers Ca2+ oscillations and egg activation in mammals is a novel phospholipase C: PLC. Reproduction. 2004;127(4):431–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Swann K, Saunders C, Rogers N, Lai F. PLCζ(zeta): a sperm protein that triggers Ca2+ oscillations and egg activation in mammals. Semin Cell Dev Biol. 2006;17(2):264–73.PubMedCrossRefGoogle Scholar
  77. 77.
    Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, et al. PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development. 2002;129(15):3533–44.PubMedGoogle Scholar
  78. 78.
    Peres A. InsP3- and Ca2(+)-induced Ca2+ release in single mouse oocytes. FEBS Lett. 1990;275(1–2):213–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Kouchi Z, Fukami K, Shikano T, Oda S, Nakamura Y, Takenawa T, et al. Recombinant phospholipase Czeta has high Ca2+ sensitivity and induces Ca2+ oscillations in mouse eggs. J Biol Chem. 2004;279(11):10408–12.PubMedCrossRefGoogle Scholar
  80. 80.
    Kline D, Kline JT. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev Biol. 1992;149(1):80–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Ducibella T, Huneau D, Angelichio E, Xu Z, Schultz RM, Kopf GS, et al. Egg-to-embryo transition is driven by differential responses to Ca(2+) oscillation number. Dev Biol. 2002;250(2):280–91.PubMedCrossRefGoogle Scholar
  82. 82.
    Markoulaki S, Matson S, Ducibella T. Fertilization stimulates long-lasting oscillations of CaMKII activity in mouse eggs. Dev Biol. 2004;272(1):15–25.PubMedCrossRefGoogle Scholar
  83. 83.
    Lorca T, Cruzalegui FH, Fesquet D, Cavadore JC, Méry J, Means A, et al. Calmodulin-dependent protein kinase II mediates inactivation of MPF and CSF upon fertilization of Xenopus eggs. Nature. 1993;366(6452):270–3.PubMedCrossRefGoogle Scholar
  84. 84.
    Ozil J-P, Markoulaki S, Toth S, Matson S, Banrezes B, Knott JG, et al. Egg activation events are regulated by the duration of a sustained [Ca2+]cyt signal in the mouse. Dev Biol. 2005;282(1):39–54.PubMedCrossRefGoogle Scholar
  85. 85.
    Bos-Mikich A, Whittingham DG, Jones KT. Meiotic and mitotic Ca2+ oscillations affect cell composition in resulting blastocysts. Dev Biol. 1997;182(1):172–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Ozil JP, Huneau D. Activation of rabbit oocytes: the impact of the Ca2+ signal regime on development. Development. 2001;128(6):917–28.PubMedGoogle Scholar
  87. 87.
    Ozil J-P, Banrezes B, Toth S, Pan H, Schultz RM. Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term. Dev Biol. 2006;300(2):534–44.PubMedCrossRefGoogle Scholar
  88. 88.
    Wu JQ, Kornbluth S. Across the meiotic divide – CSF activity in the post-Emi2/XErp1 era. J Cell Sci. 2008;121(21):3509–14.PubMedCrossRefGoogle Scholar
  89. 89.
    Kubiak JZ, Ciemerych MA, Hupalowska A, Sikora-Polaczek M, Polanski Z. On the transition from the meiotic to mitotic cell cycle during early mouse development. Int J Dev Biol. 2008;52(2–3):201–17.PubMedCrossRefGoogle Scholar
  90. 90.
    Howell BJ, Moree B, Farrar EM, Stewart S, Fang G, Salmon ED. Spindle checkpoint protein dynamics at kinetochores in living cells. Curr Biol. 2004;14(11):953–64.PubMedCrossRefGoogle Scholar
  91. 91.
    Masui Y, Markert CL. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool. 1971;177(2):129–45.PubMedCrossRefGoogle Scholar
  92. 92.
    Schmidt A, Duncan PI, Rauh NR, Sauer G, Fry AM, Nigg EA, et al. Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes Dev. 2005;19(4):502–13.PubMedCrossRefGoogle Scholar
  93. 93.
    Inoue D, Ohe M, Kanemori Y, Nobui T, Sagata N. A direct link of the Mos-MAPK pathway to Erp1/Emi2 in meiotic arrest of Xenopus laevis eggs. Nature. 2007;446(7139):1100–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Nishiyama T, Ohsumi K, Kishimoto T. Phospho­rylation of Erp1 by p90rsk is required for cytostatic factor arrest in Xenopus laevis eggs. Nature. 2007;446(7139):1096–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Wu Q, Guo Y, Yamada A, Perry JA, Wang MZ, Araki M, et al. A role for Cdc2- and PP2A-mediated regulation of Emi2 in the maintenance of CSF arrest. Curr Biol. 2007;17(3):213–24.PubMedCrossRefGoogle Scholar
  96. 96.
    Wu JQ, Hansen DV, Guo Y, Wang MZ, Tang W, Freel CD, et al. Control of Emi2 activity and stability through Mos-mediated recruitment of PP2A. Proc Natl Acad Sci USA. 2007;104(42):16564–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Hansen DV, Tung JJ, Jackson PK. CaMKII and polo-like kinase 1 sequentially phosphorylate the cytostatic factor Emi2/XErp1 to trigger its destruction and meiotic exit. Proc Natl Acad Sci USA. 2006;103(3):608–13.PubMedCrossRefGoogle Scholar
  98. 98.
    Schatten G. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev Biol. 1994;165(2):299–335.PubMedCrossRefGoogle Scholar
  99. 99.
    Schatten G, Simerly C, Schatten H. Microtubule configurations during fertilization, mitosis, and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization. Proc Natl Acad Sci USA. 1985;82(12):4152–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Sathananthan AH, Selvaraj K, Girijashankar ML, Ganesh V, Selvaraj P, Trounson AO. From oogonia to mature oocytes: inactivation of the maternal centrosome in humans. Microsc Res Tech. 2006;69(6):396–407.PubMedCrossRefGoogle Scholar
  101. 101.
    Schatten H, Sun Q-Y. The functional significance of centrosomes in mammalian meiosis, fertilization, development, nuclear transfer, and stem cell differentiation. Environ Mol Mutagen. 2009;50(8):620–36.PubMedCrossRefGoogle Scholar
  102. 102.
    Schatten H, Sun QY. The role of centrosomes in mammalian fertilization and its significance for ICSI. Mol Hum Reprod. 2009;15(9):531–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Schatten H, Walter M, Biessmann H, Schatten G. Activation of maternal centrosomes in unfertilized sea urchin eggs. Cell Motil Cytoskeleton. 1992;23(1):61–70.PubMedCrossRefGoogle Scholar
  104. 104.
    Lange BM, Gull K. Structure and function of the centriole in animal cells: progress and questions. Trends Cell Biol. 1996;6(9):348–52.PubMedCrossRefGoogle Scholar
  105. 105.
    Zamboni L, Stefanini M. The fine structure of the neck of mammalian spermatozoa. Anat Rec. 1971;169(2):155–72.PubMedCrossRefGoogle Scholar
  106. 106.
    Yang Z, Gallicano GI, Yu QC, Fuchs E. An unexpected localization of basonuclin in the centrosome, mitochondria, and acrosome of developing spermatids. J Cell Biol. 1997;137(3):657–69.PubMedCrossRefGoogle Scholar
  107. 107.
    Ou YY, Mack GJ, Zhang M, Rattner JB. CEP110 and ninein are located in a specific domain of the centrosome associated with centrosome maturation. J Cell Sci. 2002;115(Pt 9):1825–35.PubMedGoogle Scholar
  108. 108.
    Rawe VY, Díaz ES, Abdelmassih R, Wójcik C, Morales P, Sutovsky P, et al. The role of sperm proteasomes during sperm aster formation and early zygote development: implications for fertilization failure in humans. Hum Reprod. 2008;23(3):573–80.PubMedCrossRefGoogle Scholar
  109. 109.
    Simerly C, Zoran SS, Payne C, Dominko T, Sutovsky P, Navara CS, et al. Biparental inheritance of gamma-tubulin during human fertilization: molecular reconstitution of functional zygotic centrosomes in inseminated human oocytes and in cell-free extracts nucleated by human sperm. Mol Biol Cell. 1999;10(9):2955–69.PubMedGoogle Scholar
  110. 110.
    Schatten H, Sun Q-Y. The role of centrosomes in fertilization, cell division and establishment of asymmetry during embryo development. Semin Cell Dev Biol. 2010;21(2):174–84.PubMedCrossRefGoogle Scholar
  111. 111.
    Young A, Dictenberg JB, Purohit A, Tuft R, Doxsey SJ. Cytoplasmic dynein-mediated assembly of pericentrin and gamma tubulin onto centrosomes. Mol Biol Cell. 2000;11(6):2047–56.PubMedGoogle Scholar
  112. 112.
    Tesarik J, Kopecny V. Development of human male pronucleus: ultrastructure and timing. Gamete Res. 1989;24(2):135–49.PubMedCrossRefGoogle Scholar
  113. 113.
    Payne D, Flaherty SP, Barry MF, Matthews CD. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum Reprod. 1997;12(3):532–41.PubMedCrossRefGoogle Scholar
  114. 114.
    Tesarik J, Greco E. The probability of abnormal preimplantation development can be predicted by a single static observation on pronuclear stage morphology. Hum Reprod. 1999;14(5):1318–23.PubMedCrossRefGoogle Scholar
  115. 115.
    Ward WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod. 2009;16(1):30–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Ramalho-Santos J, Sutovsky P, Simerly C, Oko R, Wessel GM, Hewitson L, et al. ICSI choreography: fate of sperm structures after monospermic rhesus ICSI and first cell cycle implications. Hum Reprod. 2000;15(12):2610–20.PubMedCrossRefGoogle Scholar
  117. 117.
    Sutovsky P, Manandhar G, Wu A, Oko R. Interactions of sperm perinuclear theca with the oocyte: Implications for oocyte activation, anti-polyspermy defense, and assisted reproduction. Microsc Res Tech. 2003;61(4):362–78.PubMedCrossRefGoogle Scholar
  118. 118.
    Luetjens CM, Payne C, Schatten G. Non-random chromosome positioning in human sperm and sex chromosome anomalies following intracytoplasmic sperm injection. Lancet. 1999;353(9160):1240.PubMedCrossRefGoogle Scholar
  119. 119.
    Terada Y, Luetjens CM, Sutovsky P, Schatten G. Atypical decondensation of the sperm nucleus, delayed replication of the male genome, and sex chromosome positioning following intracytoplasmic human sperm injection (ICSI) into golden hamster eggs: does ICSI itself introduce chromosomal anomalies? Fertil Steril. 2000;74(3):454–60.PubMedCrossRefGoogle Scholar
  120. 120.
    Bonduelle M, Aytoz A, Van Assche E, Devroey P, Liebaers I, Van Steirteghem A. Incidence of chromosomal aberrations in children born after assisted reproduction through intracytoplasmic sperm injection. Hum Reprod. 1998;13(4):781–2.PubMedCrossRefGoogle Scholar
  121. 121.
    Asch R, Simerly C, Ord T, Ord VA, Schatten G. The stages at which human fertilization arrests: microtubule and chromosome configurations in inseminated oocytes which failed to complete fertilization and development in humans. Hum Reprod. 1995;10(7):1897–906.PubMedGoogle Scholar
  122. 122.
    Scott L. Pronuclear scoring as a predictor of embryo development. Reprod Biomed Online. 2003;6(2):201–14.PubMedCrossRefGoogle Scholar
  123. 123.
    Scott L, Finn A, O’Leary T, McLellan S, Hill J. Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates. Hum Reprod. 2006;22(1):230–40.PubMedCrossRefGoogle Scholar
  124. 124.
    Scott LA, Smith S. The successful use of pronuclear embryo transfers the day following oocyte retrieval. Hum Reprod. 1998;13(4):1003–13.PubMedCrossRefGoogle Scholar
  125. 125.
    Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 2009;10(10):682–96.PubMedCrossRefGoogle Scholar
  126. 126.
    Squirrell JM, Schramm RD, Paprocki AM, Wokosin DL, Bavister BD. Imaging mitochondrial organization in living primate oocytes and embryos using multiphoton microscopy. Microsc Microanal. 2003;9(3):190–201.PubMedCrossRefGoogle Scholar
  127. 127.
    Sathananthan AH, Trounson AO. Mitochondrial morphology during preimplantational human embryogenesis. Hum Reprod. 2000;15 Suppl 2:148–59.PubMedCrossRefGoogle Scholar
  128. 128.
    Capmany G, Taylor A, Braude PR, Bolton VN. The timing of pronuclear formation, DNA synthesis and cleavage in the human 1-cell embryo. Mol Hum Reprod. 1996;2(5):299–306.PubMedCrossRefGoogle Scholar
  129. 129.
    Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remohi J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26:2658–71.PubMedCrossRefGoogle Scholar
  130. 130.
    Shoukir Y, Campana A, Farley T, Sakkas D. Early cleavage of in-vitro fertilized human embryos to the 2-cell stage: a novel indicator of embryo quality and viability. Hum Reprod. 1997;12(7):1531–6.PubMedCrossRefGoogle Scholar
  131. 131.
    Van Montfoort APA. Early cleavage is a valuable addition to existing embryo selection parameters: a study using single embryo transfers. Hum Reprod. 2004;19(9):2103–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Bos-Mikich A, Mattos AL, Ferrari AN. Early cleavage of human embryos: an effective method for predicting successful IVF/ICSI outcome. Hum Reprod. 2001;16(12):2658–61.PubMedCrossRefGoogle Scholar
  133. 133.
    Lundin K, Bergh C, Hardarson T. Early embryo cleavage is a strong indicator of embryo quality in human IVF. Hum Reprod. 2001;16(12):2652–7.PubMedCrossRefGoogle Scholar
  134. 134.
    Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28(10):1115–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Biogenesi, Reproductive Medicine CentreIstituti Clinici ZucchiMonzaItaly

Personalised recommendations