Skip to main content

Case Study #7: Satellite Reorientation Control

  • Chapter
Nonlinear Power Flow Control Design

Part of the book series: Understanding Complex Systems ((UCS))

  • 2144 Accesses

Abstract

ChapterĀ 12 presents HSSPFC applied to a slewing spacecraft problem. The specific slewing spacecraft problem is a Multi-Input-Multi-Output (MIMO) three-axis spacecraft that employs Proportional-Integral-Derivative (PID) tracking control with numerical simulation results. This problem provides an interesting complication due to the three-axis rigid body rotation sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robinett III, R.D., Wilson, D.G.: Exergy and irreversible entropy production thermodynamic concepts for nonlinear control design. Int. J. Exergy 6(3), 357ā€“387 (2009)

    Google ScholarĀ 

  2. Robinett III, R.D., Wilson, D.G.: Exergy and entropy thermodynamic concepts for control system design: slewing single axis. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO, August 2006

    Google ScholarĀ 

  3. Robinett III, R.D., Wilson, D.G.: Nonlinear slewing spacecraft control based on exergy, power flow, and static and dynamic stability. Journal of the Astronautical Sciences 57(4) (2009)

    Google ScholarĀ 

  4. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    MATHĀ  Google ScholarĀ 

  5. Hughes, P.C.: Spacecraft Attitude Dynamics. Dover, New York (2004)

    Google ScholarĀ 

  6. Srivener, S.L., Thompson, R.C.: Survey of time-optimal attitude maneuvers. J. Guid. Control Dyn. 17(2), 225ā€“233 (1994)

    ArticleĀ  Google ScholarĀ 

  7. Tsiotras, P.: Stabilization and optimality results for attitude control problem. J. Guid. Control Dyn. 9(4), 772ā€“779 (1996)

    ArticleĀ  Google ScholarĀ 

  8. Subbarao, K.: Nonlinear PID-like controllers for rigid-body attitude stabilization. J. Astronaut. Sci. 52(1 and 2), 61ā€“74 (2004)

    MathSciNetĀ  Google ScholarĀ 

  9. Tsiotras, P.: Further passivity results for the attitude control problems. IEEE Trans. Autom. Control 43(11), 1597ā€“1600 (1998)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  10. Cavallo, A., DeMaria, G.: Attitude control of large angle maneuvers. In: Proceedings of the IEEE Workshop Variable Structure Control, pp.Ā 232ā€“236 (1996)

    ChapterĀ  Google ScholarĀ 

  11. Vadali, S.R.: Variable-structure control of spacecraft large-angle maneuvers. AIAA Journal of Guidance, Control, and Dynamics 235ā€“239 (1986)

    Google ScholarĀ 

  12. Robinett III, R.D., Parker, G.G.: Spacecraft Euler parameter tracking of large angle maneuvers via sliding mode control. J. Guid. Control Dyn. 19, 702ā€“703 (1996)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  13. Robinett III, R.D., Parker, G.G.: Least squares sliding mode control tracking of spacecraft large angle maneuvers. J. Astronaut. Sci. 45(4), 433ā€“450 (1997)

    Google ScholarĀ 

  14. Singh, S.N.: Nonlinear attitude control of spacecraft. IEEE Trans. Aerosp. Electron. Syst. 23, 371ā€“379 (1987)

    ArticleĀ  Google ScholarĀ 

  15. Tandale, M.D., Valasek, J.: Adaptive dynamic inversion control with actuator saturation constraints applied to tracking spacecraft maneuvers. J. Astronaut. Sci. 52(4), 517ā€“530 (2004)

    MathSciNetĀ  Google ScholarĀ 

  16. Tewari, A.: Optimal nonlinear spacecraft attitude control through Hamiltonianā€“Jacobi formulation. J. Astronaut. Sci. 50(1), 99ā€“112 (2002)

    MathSciNetĀ  Google ScholarĀ 

  17. Joshi, S.M., Kelkar, A.G., Wen, J.T.Y.: Robust attitude stabilization of spacecraft using nonlinear quaternion feedback. IEEE Trans. Autom. Control 40, 1800ā€“1803 (1995)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  18. Wie, B., Barba, P.M.: Quaternion feedback for spacecraft large angle maneuvers. J. Guid. Control Dyn. 3(3), 360ā€“365 (1985)

    ArticleĀ  Google ScholarĀ 

  19. Dalsmo, M., Egeland, O.: State feedback H āˆž-suboptimal control of a rigid spacecraft. IEEE Trans. Autom. Control 42, 1186ā€“1189 (1997)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  20. Kang, W.: Nonlinear control and its applications to rigid spacecraft. IEEE Trans. Autom. Control 40, 1281ā€“1285 (1995)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  21. Kristic, M., Tsiotras, P.: Inverse optimal stabilization of rigid spacecraft. IEEE Trans. Autom. Control 44, 1042ā€“1049 (1999)

    ArticleĀ  Google ScholarĀ 

  22. Yang, C.D., Kung, C.C.: Nonlinear H āˆž flight control of general six degree-of-freedom motions. J. Guid. Control Dyn. 23(2), 278ā€“288 (2000)

    ArticleĀ  Google ScholarĀ 

  23. Show, L.-L., Juang, J.-C., Jan, Y.-W.: An LMI-based nonlinear attitude control approach. IEEE Trans. Control Syst. Technol. 11(1), 73ā€“83 (2003)

    ArticleĀ  Google ScholarĀ 

  24. Pacheco, R.P., Steffen, V. Jr.: Orthogonal function techniques for the identification of nonlinear mechanical systems. Mater. Sci. Forum 440ā€“441, 59ā€“68 (2003). Trans Tech Pubs, Switzerland

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Wilson .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Robinett, R.D., Wilson, D.G. (2011). Case Study #7: Satellite Reorientation Control. In: Nonlinear Power Flow Control Design. Understanding Complex Systems. Springer, London. https://doi.org/10.1007/978-0-85729-823-2_12

Download citation

Publish with us

Policies and ethics