Advertisement

Line Geometry in Terms of the Null Geometric Algebra over ℝ3,3, and Application to the Inverse Singularity Analysis of Generalized Stewart Platforms

  • Hongbo Li
  • Lixian Zhang

Abstract

In this chapter, the classical line geometry is modeled in ℝ3,3, where lines are represented by null vectors, and points and planes by null 3-blades. The group of 3D special projective transformations SL(4) when acting upon points in space induces a Lie group isomorphism, with SO(3,3) acting upon lines.

As an application of the use of the ℝ3,3 model of line geometry, this chapter analyzes the inverse singularity analysis of generalized Stewart platforms, using vectors of ℝ3,3 to encode the force and torque wrenches to classify their singular configurations.

Keywords

Null Vector Stewart Platform Ball Joint Singular Configuration Line Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ball, R.: The Theory of Screws: A Study in the Dynamics of a Rigid Body. Hodges, Foster (1876) Google Scholar
  2. 2.
    Basu, D., Ghosal, A.: Singularity analysis of platform-type multi-loop spatial mechanism. Mech. Mach. Theory 32, 375–389 (1997) CrossRefGoogle Scholar
  3. 3.
    Ben-Horin, P., Shoham, M.: Singularity analysis of a class of parallel robots based on Grassmann–Cayley algebra. Mech. Mach. Theory 41, 958–970 (2006) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Busemann, H.: Projective Geometry and Projective Metrics. Academic Press, New York (1953) MATHGoogle Scholar
  5. 5.
    Cayley, A.: On the six coordinates of a line. Trans. Camb. Philos. Soc. 5, 290–323 (1869) Google Scholar
  6. 6.
    Collins, C., Long, G.: Singularity analysis of an in-parallel hand controller for force-reflected teleoperation. IEEE J. Robot. Autom. 11, 661–669 (1995) CrossRefGoogle Scholar
  7. 7.
    Dandurand, A.: The rigidity of compound spatial grids. Struct. Topol. 10, 41–56 (1984) MathSciNetMATHGoogle Scholar
  8. 8.
    Fang, Y., Tsai, L.: Structure synthesis of a class of 4-DoF and 5-DoF parallel manipulators with identical limb structures. Int. J. Robot. Res. 21, 799–810 (2002) CrossRefGoogle Scholar
  9. 9.
    Featherstone, R.: Robot Dynamics Algorithms. Springer, Berlin (1987) Google Scholar
  10. 10.
    Gao, X., Lei, D., Liao, Q., Zhang, G.: Generalized Stewart–Gough platforms and their direct kinematics. IEEE Trans. Robot. Autom. 21, 141–151 (2005) Google Scholar
  11. 11.
    Gosselin, C., Angeles, J.: Singularity analysis of closed-loop kinematic chains. IEEE Trans. Robot. Autom. 6, 281–290 (1990) CrossRefGoogle Scholar
  12. 12.
    Hodge, W., Pedoe, D.: Methods of Algebraic Geometry, vol. 1. Cambridge University Press, Cambridge (1952) Google Scholar
  13. 13.
    Huang, Z., Chen, L., Li, W.: The singularity principle and property of Stewart parallel manipulator. J. Robot. Syst. 20, 163–176 (2003) MATHCrossRefGoogle Scholar
  14. 14.
    Hunt, K.: Kinematic Geometry of Mechanisms. Oxford University Press, Oxford (1978) MATHGoogle Scholar
  15. 15.
    Jenner, W.: Rudiments of Algebraic Geometry. Oxford University Press, Oxford (1963) MATHGoogle Scholar
  16. 16.
    Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008) MATHCrossRefGoogle Scholar
  17. 17.
    Long, G.: Use of the cylindroid for the singularity analysis of rank 3 robot manipulator. Mech. Mach. Theory 32, 391–404 (1997) CrossRefGoogle Scholar
  18. 18.
    Maxwell, E.: General Homogeneous Coordinates in Spaces of Three Dimensions. Cambridge University Press, Cambridge (1951) Google Scholar
  19. 19.
    Merlet, J.: Singular configurations of parallel manipulators and Grassmann geometry. Int. J. Robot. Res. 8, 45–56 (1989) CrossRefGoogle Scholar
  20. 20.
    Merlet, J.: Parallel Robots. 2nd edn. Springer, Heidelberg (2006) MATHGoogle Scholar
  21. 21.
    Park, F., Kim, J.: Singularity analysis of closed kinematics chains. J. Mech. Des. 121, 32–38 (1999) CrossRefGoogle Scholar
  22. 22.
    Pottmann, H.: Computational Line Geometry. Springer, Heidelberg (2001) MATHGoogle Scholar
  23. 23.
    Semple, J., Roth, L.: Introduction to Algebraic Geometry. Oxford University Press, Oxford (1949) MATHGoogle Scholar
  24. 24.
    Sommerville, D.: Analytic Geometry of Three Dimensions. Cambridge University Press, Cambridge (1934) Google Scholar
  25. 25.
    Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180, 371–378 (1965) CrossRefGoogle Scholar
  26. 26.
    Study, E.: Geometrie der Dynamen. Leipzig (1903) Google Scholar
  27. 27.
    Woo, L., Freudenstein, F.: Application of line geometry to theoretical kinematics and the kinematic analysis of mechanical systems. J. Mech. 5, 417–460 (1970) CrossRefGoogle Scholar
  28. 28.
    Yang, A.: Calculus of screws. In: Spillers, W. (ed.) Basic Questions of Design Theory. Elsevier, Amsterdam (1974) Google Scholar
  29. 29.
    Zlatanov, D., Fenton, R., Benhabib, B.: Identification and classification of the singular configurations of mechanisms. Mech. Mach. Theory 33, 743–760 (1998) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingP.R. China

Personalised recommendations