Skip to main content

Physiological Assessment and Cardiopulmonary Exercise Testing

  • Chapter
  • First Online:
Management of Lung Cancer in Older People

Abstract

There have been significant advances in the management and treatment of lung cancer over the last 10–20 years, but surgical resection remains the primary treatment that results in cure and long-term survival. However, factors that predispose to the development of lung cancer also increase the incidence of chronic obstructive pulmonary disease. Physiological testing before lung cancer surgery is important, and every patient should undergo detailed lung function testing including measurement of the transfer factor for carbon dioxide (TLCO). Patients with a predicted postoperative FEV1 and TLCO of <40 % predicted should undergo cardiopulmonary exercise testing to further detail their risk status. Only in this way can a fully informed decision take place between the patient and surgeon as to the best treatment which not only attempts “cure” but also minimizes postoperative mortality while delivering acceptable postoperative breathlessness and quality of life. Age alone should never be used to deny surgery and function should be formally assessed as we have detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young RP, Hopkins RJ. How the genetics of lung cancer may overlap with COPD. Respirology. 2011;16:1047–55.

    Article  PubMed  Google Scholar 

  2. Adcock IM, Caramori G, Barnes PJ. Chronic obstructive pulmonary disease and lung cancer: new molecular insights. Respiration. 2011;81:265–84.

    Article  PubMed  CAS  Google Scholar 

  3. Rooney C, Sethi T. The epithelial cell and lung cancer: the link between chronic obstructive pulmonary disease and lung cancer. Respiration. 2011;81:89–104.

    Article  PubMed  Google Scholar 

  4. Harris JM, Johnston ID, Rudd R, et al. Cryptogenic fibrosing alveolitis and lung cancer: the BTS study. Thorax. 2010;65:70–6.

    Article  PubMed  CAS  Google Scholar 

  5. Berrino F, De Angelis R, Sant M, et al. Survival for eight major cancers and all cancers combined for European adults diagnosed in 1995-99: results of the EUROCARE-4 study. Lancet Oncol. 2007;8:773–83.

    Article  PubMed  Google Scholar 

  6. Forrest LM, McMillan DC, McArdle CS, et al. An evaluation of the impact of a multidisciplinary team, in a single centre, on treatment and survival in patients with inoperable non-small-cell lung cancer. Br J Cancer. 2005;93(9):977–8.

    Article  PubMed  CAS  Google Scholar 

  7. Onishi H, Shirato H, Nagata Y, et al. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol. 2007;2:S94–100.

    Article  PubMed  Google Scholar 

  8. Lagerwaard FJ, Haasbeek CJ, Smit EF, et al. Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2008;70:685–92.

    Article  PubMed  Google Scholar 

  9. Palma D, Visser O, Lagerwaard FJ, et al. Treatment of stage I NSCLC in elderly patients: a population-based matched-pair comparison of stereotactic radiotherapy versus surgery. Radiother Oncol. 2011;101:240–4.

    Article  PubMed  Google Scholar 

  10. Brunelli A, Charloux A, Bolliger CT, et al. European Sespiratory Society and European Society of Thoracic Surgeons joint task force on fitness for radical therapy. ERS/ESTS clinical guidelines on fitness for radical therapy in lung cancer patients (surgery and chemo-radiotherapy). Eur Respir J. 2009;34:17–41.

    Article  PubMed  CAS  Google Scholar 

  11. Brunelli A, Charloux A, Bolliger CT, European Respiratory Society, European Society of Thoracic Surgeons Joint Task Force on Fitness For Radical Therapy, et al. The European Respiratory Society and European Society of Thoracic Surgeons clinical guidelines for evaluating fitness for radical treatment (surgery and chemoradiotherapy) in patients with lung cancer. Eur J Cardiothorac Surg. 2009;36:181–4.

    Article  PubMed  Google Scholar 

  12. Lim E, Baldwin D, Beckles M, British Thoracic Society, Society for Cardiothoracic Surgery in Great Britain and Ireland, et al. Guidelines on the radical management of patients with lung cancer. Thorax. 2010;65 Suppl 3:iii1–27.

    Article  PubMed  Google Scholar 

  13. Goffin J, Lacchetti C, Ellis PM, Lung Cancer Disease Site Group of Cancer Care Ontario’s Program in Evidence-Based Care, et al. First-line systemic chemotherapy in the treatment of advanced non-small cell lung cancer: a systematic review. J Thorac Oncol. 2010;5:260–74.

    Article  PubMed  Google Scholar 

  14. Greillier L, Thomas P, Loundou A, et al. Pulmonary function tests as a predictor of quantitative and qualitative outcomes after thoracic surgery for lung cancer. Clin Lung Cancer. 2007;8:554–61.

    Article  PubMed  Google Scholar 

  15. Balduyck B, Hendriks J, Lauwers P, et al. Quality of life evolution after lung cancer surgery: a prospective study in 100 patients. Lung Cancer. 2007;56:423–31.

    Article  PubMed  CAS  Google Scholar 

  16. Cerveri I, Dore R, Corsico A, et al. Assessment of emphysema in COPD: a functional and radiologic study. Chest. 2004;125:1714–8.

    Article  PubMed  Google Scholar 

  17. Kearney DJ, Lee TH, Reilly JJ, et al. Assessment of operative risk in patients undergoing lung resection. Importance of predicted pulmonary function. Chest. 1994;105:753–9.

    Article  PubMed  CAS  Google Scholar 

  18. Colice GL, Shafazand S, Griffin JP, et al. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: ACCP evidence-based clinical practice guidelines (2nd edition). Chest. 2007;132(3 Suppl):161S–77.

    Article  PubMed  Google Scholar 

  19. Win T, Jackson A, Sharples L, et al. Relationship between pulmonary function and lung cancer surgical outcome. Eur Respir J. 2005;25:594–9.

    Article  PubMed  CAS  Google Scholar 

  20. Pierce RJ, Copland JM, Sharpe K, et al. Preoperative risk evaluation for lung cancer resection: predicted postoperative product as a predictor of surgical mortality. Am J Respir Crit Care Med. 1994;150:947–55.

    Article  PubMed  CAS  Google Scholar 

  21. Markos J, Mullan BP, Hillman DR, et al. Preoperative assessment as a predictor of mortality and morbidity after lung resection. Am Rev Respir Dis. 1989;139:902–10.

    Article  PubMed  CAS  Google Scholar 

  22. Nakahara K, Monden Y, Ohno K, et al. A method for predicting postoperative lung function and its relation to postoperative complications in patients with lung cancer. Ann Thorac Surg. 1985;39:260–5.

    Article  PubMed  CAS  Google Scholar 

  23. Nakahara K, Ohno K, Hashimoto J, et al. Prediction of postoperative respiratory failure in patients undergoing lung resection for lung cancer. Ann Thorac Surg. 1988;46:549–52.

    Article  PubMed  CAS  Google Scholar 

  24. Brunelli A, Al Refai M, Monteverde M, et al. Predictors of early morbidity after major lung resection in patients with and without airflow limitation. Ann Thorac Surg. 2002;74:999–1003.

    Article  PubMed  Google Scholar 

  25. Varela G, Brunelli A, Rocco G, et al. Predicted versus observed FEV1 in the immediate postoperative period after pulmonary lobectomy. Eur J Cardiothorac Surg. 2006;30:644–8.

    Article  PubMed  Google Scholar 

  26. Zeiher BG, Gross TJ, Kern JA, et al. Predicting postoperative pulmonary function in patients undergoing lung resection. Chest. 1995;108:68–72.

    Article  PubMed  CAS  Google Scholar 

  27. Schattenberg T, Muley T, Dienemann H, et al. Impact on pulmonary function after lobectomy in patients with chronic obstructive pulmonary disease. Thorac Cardiovasc Surg. 2007;55:500–4.

    Article  PubMed  CAS  Google Scholar 

  28. Baldi S, Ruffini E, Harari S, et al. Does lobectomy for lung cancer in patients with chronic obstructive pulmonary disease affect lung function? A multicenter national study. J Thorac Cardiovasc Surg. 2005;130:1616–22.

    Article  PubMed  Google Scholar 

  29. Ferguson MK, Little L, Rizzo L, et al. Diffusing capacity predicts morbidity and mortality after pulmonary resection. J Thorac Cardiovasc Surg. 1988;96:894–900.

    PubMed  CAS  Google Scholar 

  30. Wang J, Olak J, Ferguson MK. Diffusing capacity predicts operative mortality but not long-term survival after resection for lung cancer. J Thorac Cardiovasc Surg. 1999;117:581–7.

    Article  PubMed  CAS  Google Scholar 

  31. Ferguson MK, Vigneswaran WT. Diffusing capacity predicts morbidity after lung resection in patients without obstructive lung disease. Ann Thorac Surg. 2008;85:1158–65.

    Article  PubMed  Google Scholar 

  32. Williams AJ, Cayton RM, Harding LK, et al. Quantitative lung scintigrams and lung function in the selection of patients for pneumonectomy. Br J Dis Chest. 1984;78:105–12.

    Article  PubMed  CAS  Google Scholar 

  33. Olsen GN, Block AJ, Tobias JA. Prediction of postpneumonectomy pulmonary function using quantitative macroaggregate lung scanning. Chest. 1974;66:13–6.

    Article  PubMed  CAS  Google Scholar 

  34. Cordiner A, De Carlo F, De Gennaro R, et al. Prediction of postoperative pulmonary function following thoracic surgery for bronchial carcinoma. Angiology. 1991;42:985–9.

    Article  PubMed  CAS  Google Scholar 

  35. Bria WF, Kanarek DJ, Kazemi H. Prediction of postoperative pulmonary function following thoracic operations. Value of ventilation-perfusion scanning. J Thorac Cardiovasc Surg. 1983;86:186–92.

    PubMed  CAS  Google Scholar 

  36. Janssens JP, Pache JC, Nicod LP. Physiological changes in respiratory function associated with ageing. Eur Respir J. 1999;13:197–205.

    Article  PubMed  CAS  Google Scholar 

  37. Quanjer PH, Tammeling GJ, Cotes JE, et al. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J. 1993;6:5–40.

    Google Scholar 

  38. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med. 1999;159:179–87.

    Article  PubMed  CAS  Google Scholar 

  39. Quanjer PH, Stocks J, Cole TJ, et al. Global lungs initiative. Influence of secular trends and sample size on reference equations for lung function tests. Eur Respir J. 2011;37:658–64.

    Article  PubMed  CAS  Google Scholar 

  40. Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26:948–68.

    Article  PubMed  CAS  Google Scholar 

  41. Brady LW, Germon PA, Cander L. The effects of radiation therapy on pulmonary function in carcinoma of the lung. Radiology. 1965;85:130–4.

    PubMed  CAS  Google Scholar 

  42. Germon PA, Brady LW. Physiologic changes before and after radiation treatment for carcinoma of the lung. JAMA. 1968;206:809–14.

    Article  PubMed  CAS  Google Scholar 

  43. Gross NJ. Pulmonary effects of radiation therapy. Ann Intern Med. 1977;86:81–92.

    Article  PubMed  CAS  Google Scholar 

  44. Borst GR, De Jaeger K, Belderbos JS, et al. Pulmonary function changes after radiotherapy in non-small-cell lung cancer patients with long-term disease-free survival. Int J Radiat Oncol Biol Phys. 2005;2:639–44.

    Article  Google Scholar 

  45. Gopal R, Starkschall G, Tucker SL, et al. Effects of radiotherapy and chemotherapy on lung function in patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2003;56:114–20.

    Article  PubMed  Google Scholar 

  46. Leo F, Solli P, Spaggiari L, et al. Respiratory function changes after chemotherapy: an additional risk for postoperative respiratory complications? Ann Thorac Surg. 2004;77:260–5.

    Article  PubMed  Google Scholar 

  47. Takeda S, Funakoshi Y, Kadota Y, et al. Fall in diffusing capacity associated with induction therapy for lung cancer: a predictor of postoperative complication? Ann Thorac Surg. 2006;82:232–6.

    Article  PubMed  Google Scholar 

  48. Cerfolio RJ, Talati A, Bryant AS. Changes in pulmonary function tests after neoadjuvant therapy predict postoperative complications. Ann Thorac Surg. 2009;88:930–6.

    Article  PubMed  Google Scholar 

  49. Margaritora S, Cesario A, Cusumano G, et al. Is pulmonary function damaged by neoadjuvant lung cancer therapy? A comprehensive serial time-trend analysis of pulmonary function after induction radiochemotherapy plus surgery. J Thorac Cardiovasc Surg. 2010;139:1457–63.

    Article  PubMed  CAS  Google Scholar 

  50. Fishman A, Martinez F, Naunheim K, National Emphysema Treatment Trial Research Group, et al. A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N Engl J Med. 2003;348:2059–73.

    Article  PubMed  Google Scholar 

  51. National Emphysema Treatment Trial Research Group. Patients at high risk of death after lung-volume-reduction surgery. N Engl J Med. 2001;345:1075–83.

    Article  Google Scholar 

  52. Older P, Smith R, Courtney P, et al. Preoperative evaluation of cardiac-failure and ischemia in elderly patients by cardiopulmonary exercise testing. Chest. 1993;104:701–4.

    Article  PubMed  CAS  Google Scholar 

  53. Simpson JC, Sutton H, Grocott MPW. Cardiopulmonary exercise testing - a survey of current use in England. J Intensive Care Soc. 2009;10:275–8.

    Google Scholar 

  54. Ridgway ZA, Howell SJ. Cardiopulmonary exercise testing: a review of methods and applications in surgical patients. Eur J Anaesthesiol. 2010;27:858–65.

    Article  PubMed  Google Scholar 

  55. Snowden CP, Prentis JM, Anderson HL, et al. Submaximal cardiopulmonary exercise testing predicts complications and hospital length of stay in patients undergoing major elective surgery. Ann Surg. 2010;251:535–41.

    Article  PubMed  Google Scholar 

  56. Wilson RJ, Davies S, Yates D, et al. Impaired functional capacity is associated with all-cause mortality after major elective intra-abdominal surgery. Br J Anaesth. 2010;105:297–303.

    Article  PubMed  CAS  Google Scholar 

  57. American Thoracic Society, American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167:211–77.

    Article  Google Scholar 

  58. Wasserman K, Hansen JE, Sue DY, et al. Principles of exercise testing and interpretation. 4th ed. Baltimore: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  59. Older P, Hall A, Hader R. Cardiopulmonary exercise testing as a screening test for perioperative management of major surgery in the elderly. Chest. 1999;116:355–62.

    Article  PubMed  CAS  Google Scholar 

  60. McCullough PA, Gallagher MJ, Dejong AT, et al. Cardiorespiratory fitness and short-term complications after bariatric surgery. Chest. 2006;130:517–25.

    Article  PubMed  Google Scholar 

  61. Carlisle J, Swart M. Mid-term survival after abdominal aortic aneurysm surgery predicted by cardiopulmonary exercise testing. Br J Surg. 2007;94:966–9.

    Article  PubMed  CAS  Google Scholar 

  62. Hopker JG, Jobson SA, Pandit JJ. Controversies in the physiological basis of the “anaerobic threshold” and their implications for clinical cardiopulmonary exercise testing. Anaesthesia. 2011;66:111–23.

    Article  PubMed  CAS  Google Scholar 

  63. Ozcelik O, Ward SA, Whipp BJ. Effect of altered body CO2 stores on pulmonary gas exchange dynamics during incremental exercise in humans. Exp Physiol. 1999;84:999–1011.

    Article  PubMed  CAS  Google Scholar 

  64. Wasserman K, Whipp BJ. Exercise physiology in health and disease. Am Rev Respir Dis. 1975;112:219–59.

    PubMed  CAS  Google Scholar 

  65. Pollock ML, Foster C, Knapp D, et al. Effect of age and training on aerobic capacity and body composition of master athletes. J Appl Physiol. 1987;62:725–31.

    PubMed  CAS  Google Scholar 

  66. Rogers MA, Hagberg JM, Martin WH, et al. Decline in VO2 Max with aging in master athletes and sedentary men. J Appl Physiol. 1990;68:2195–9.

    PubMed  CAS  Google Scholar 

  67. Hossack KF, Bruce RA. Maximal cardiac function in sedentary normal men and women: comparison of age-related changes. J Appl Physiol. 1982;53:799–804.

    PubMed  CAS  Google Scholar 

  68. Ogawa TR, Spina RJ, Martin WH, et al. Effects of aging, sex and physical training on cardiovascular responses to exercise. Circulation. 1992;86:494–503.

    Article  PubMed  CAS  Google Scholar 

  69. Sandvik L, Erikssen J, Thaulow E, et al. Physical fitness as a predictor of mortality among healthy, middle-aged Norwegian men. N Engl J Med. 1993;328:533–7.

    Article  PubMed  CAS  Google Scholar 

  70. Toth MJ, Gardner AW, Ades PA, et al. Contribution of body composition and physical activity to age-related decline in peak VO2 in men and women. J Appl Physiol. 1994;77:647–52.

    PubMed  CAS  Google Scholar 

  71. Posner JD, Gorman KM, Klein HS, et al. Ventilatory threshold: measurement and variation with age. J Appl Physiol. 1987;63:1519–25.

    PubMed  CAS  Google Scholar 

  72. Smith TB, Stonell C, Purkayastha S, et al. Cardiopulmonary exercise testing as a risk assessment method in non cardio-pulmonary surgery: a systematic review. Anaesthesia. 2009;64:883–9.

    Article  PubMed  CAS  Google Scholar 

  73. West M, Jack S, Grocott MP. Perioperative cardiopulmonary exercise testing in the elderly. Best Pract Res Clin Anaesthesiol. 2011;25:427–37.

    Article  PubMed  CAS  Google Scholar 

  74. Hennis PJ, Meale PM, Grocott MPW. Cardiopulmonary exercise testing for the evaluation of perioperative risk in non-cardio-pulmonary surgery. Postgrad Med J. 2011;87:550–7.

    Article  PubMed  Google Scholar 

  75. Epstein SK, Faling J, Daly BDT, et al. Inability to perform bicycle ergometry predicts increased morbidity and mortality after lung resection. Chest. 1995;107:311–6.

    Article  PubMed  CAS  Google Scholar 

  76. Smith TP, Kinasewitz GT, Tucker WY, et al. Exercise capacity as a predictor of post-thoracotomy morbidity. Am Rev Respir Dis. 1984;129:730–4.

    PubMed  CAS  Google Scholar 

  77. Colman NC, Schraufnagel DE, Rivington RN, et al. Exercise testing in evaluation of patients for lung resection. Am Rev Respir Dis. 1982;125:604–6.

    PubMed  CAS  Google Scholar 

  78. Ussetti P, Roca J, Agusti AGN, et al. Failure of exercise tolerance and hemodynamic studies t predict early post-thoracotomy morbidity and mortality. Am Rev Respir Dis. 1988; A94.

    Google Scholar 

  79. Bechard D, Wetstein L. Assessment of exercise oxygen consumption as preoperative criterion for lung resection. Ann Thorac Surg. 1987;44:344–9.

    Article  PubMed  CAS  Google Scholar 

  80. Gerson MC, Hurst JM, Hertzberg VS, et al. Prediction of cardiac and pulmonary complications related to elective abdomen and non-cardiac thoracic surgery in geriatric patients. Am J Med. 1990;88:101–7.

    Article  PubMed  CAS  Google Scholar 

  81. Epstein SK, Faling LJ, Daly BD, et al. Predicting complications after pulmonary resection. Preoperative exercise testing vs. a multifactorial cardiopulmonary risk index. Chest. 1993;104:694–700.

    Article  PubMed  CAS  Google Scholar 

  82. Richter Larsen K, Svendsen UG, et al. Exercise testing in the preoperative evaluation of patients with bronchogenic carcinoma. Eur Respir J. 1997;10:1559–65.

    Article  PubMed  CAS  Google Scholar 

  83. Brutsche MH, Spiliopoulos A, Bolliger CT, et al. Exercise capacity and extent of resection as predictors of surgical risk in lung cancer. Eur Respir J. 2000;15:828–32.

    Article  PubMed  CAS  Google Scholar 

  84. Villani F, Busia A. Preoperative evaluation of patients submitted to pneumonectomy for lung carcinoma: role of exercise testing. Tumori. 2004;90:405–9.

    PubMed  Google Scholar 

  85. Nagamatsu Y, Shima I, Hayashi A, et al. Preoperative spirometry versus expired gas analysis during exercise testing as predictors of cardiopulmonary complications after lung resection. Surg Today. 2004;34:107–10.

    Article  PubMed  Google Scholar 

  86. Win T, Jackson A, Sharples L, et al. Cardiopulmonary exercise tests and lung cancer surgical outcome. Chest. 2005;127:1159–65.

    Article  PubMed  Google Scholar 

  87. Bolliger CT, Jordan P, Soler M, et al. Exercise capacity as a predictor of post-operative complications in lung resection candidates. Am J Respir Crit Care Med. 1995;151:1472–80.

    Article  PubMed  CAS  Google Scholar 

  88. Benzo R, Kelley GA, Recchi L, et al. Complications of lung resection and exercise capacity: a meta-analysis. Respir Med. 2007;101:1790–7.

    Article  PubMed  Google Scholar 

  89. Tilburg PMB, Stam H, Hoogsteden HC. Pre-operative pulmonary evaluation of lung cancer patients: a review of the literature. Eur Respir J. 2009;33:1206–15.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm West MD, MRCS(Ed) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Walker, P.P., West, M., Grocott, M.P.W., Jack, S. (2013). Physiological Assessment and Cardiopulmonary Exercise Testing. In: Gridelli, C., Audisio, R. (eds) Management of Lung Cancer in Older People. Springer, London. https://doi.org/10.1007/978-0-85729-793-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-793-8_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-792-1

  • Online ISBN: 978-0-85729-793-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics