Skip to main content

Methods for Power Flow Analysis

  • Chapter
  • First Online:
Assessment of Power System Reliability
  • 3606 Accesses

Abstract

The methods for power flow analysis can be divided to deterministic and probabilistic methods. The deterministic methods, such as Newton?Raphson method, Gauss?Seidel method, fast decoupled load flow method, and direct current load flow method, use specific values of power generations and load demands of a selected network configuration to calculate system states and power flows. The probabilistic methods require inputs with probability density function to obtain system states and power flows in terms of probability density function, so that the system uncertainties can be included and reflected in the results. The methods are presented and the related equations and systems of equations are explained. The focus is placed to the Newton?Raphson method and to Gauss?Seidel method. The iterative procedures are explained. The graphical representation of the procedure steps is given.

Nearly all men can stand adversity, but if you want to test a man’s character, give him power

Abraham Lincoln

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grainger JJ, Stevenson WD (1994) Power system analysis. McGraw-Hill, New York

    Google Scholar 

  2. Raji?i? D, Taleski R (1996) Methods for analysis of power systems (in Macedonian). Faculty of Electrical Engineering, Skopje

    Google Scholar 

  3. Tinney WF, Hart CE (1967) Power flow solution by Newton’s method. IEEE Trans Power App Syst 86:1449?1460

    Article  Google Scholar 

  4. Stott B (1971) Effective starting process for Newton?Raphson load flow. Proc Inst Electr Eng 118:983?987

    Article  Google Scholar 

  5. Treece JA (1969) Bootstrap Gauss?Seidel load flow. Proc Inst Electr Eng 116(5):866?870

    Article  MathSciNet  Google Scholar 

  6. Volkanovski A (2008) Impact of offsite power system reliability on nuclear power plant safety. PhD thesis, University of Ljubljana

    Google Scholar 

  7. Deckmann S, Pizzolante AC, Monticelli AJ et al (1999) Numerical testing of power system load flow equivalents. IEEE Trans Power App Syst 6:2292?2300

    Google Scholar 

  8. Deckmann S, Pizzolante AC, Monticelli AJ et al (1999) Studies on power system load flow equivalents. IEEE Trans Power App Syst 6:2301?2310

    Google Scholar 

  9. Stott B (1974) Review of Load-Flow Calculation Methods, Proc Inst Electr Eng 62(7)

    Google Scholar 

  10. Stott B (1971) Effective starting process for Newton-Raphson load flows. Proc Inst Electr Eng 118(8):983?987

    Article  Google Scholar 

  11. Mori H, Tanaka H, Kanno J (1996) A preconditioned fast decoupled power flow method for contingency screening. IEEE Trans Power Syst 11(1):357?363

    Article  Google Scholar 

  12. Alves AB, Asada EN, Monticelli A (1999) Critical evaluation of direct and iterative methods for solving ax=b systems in power flow calculations and contingency analysis. IEEE Trans Power Syst 12(4):702?708

    Article  Google Scholar 

  13. Wood AJ, Wollenberg BF (1996) Power Generation, Operation and Control. Wiley.

    Google Scholar 

  14. Powell L (2004) Power System Load Flow Analysis, McGraw-Hill Professional Series

    Google Scholar 

  15. Glimn AF, Stagg GW (1957) Automatic Calculation of Load Flows, AIEE Summer General Meeting, pp 24?28

    Google Scholar 

  16. Stott B, Jardim J, Alsaç O (2009) DC Power Flow Revisited. IEEE Trans Power Syst 24(3)

    Google Scholar 

  17. Srinivas MS (2000) Distribution load flows: a brief review, Power Engineering Society Winter Meeting, IEEE, pp 942?945

    Google Scholar 

  18. van Amerongen RAM (1989) A General-Purpose Version of the Fast Decoupled Load Flow. IEEE Trans Power Syst 4(2):760?770

    Article  Google Scholar 

  19. Stott B, Alsac O (1974) Fast Decoupled Load Flow. IEEE Trans Power App Syst 93(3):859?869

    Article  Google Scholar 

  20. Peterson NM, Tinney WF, Bree DW (1972) Iterative Linear AC Power Flow Solution for Fast Approximate Outage Studies. IEEE Trans Power App Syst 91:2048?2053

    Article  Google Scholar 

  21. Tinney WF, Peterson NM (1971) Steady State Security Monitoring, Proc Symposium on Real Time Control of Electric Power Systems, Brown, Boveri & Comp Ltd, Baden

    Google Scholar 

  22. Wu FF (1977) Theoretical Study of the Convergence of the Fast Decoupled Loadflow. IEEE Trans Power App Syst 96:268?275

    Article  Google Scholar 

  23. Haley PH, Ayres M (1985) Super Decoupled Loadflow with Distributed Slack Bus. IEEE Trans Power App Syst 104:104?113

    Article  Google Scholar 

  24. Raji?i? D, Bose A (1987) A Modification to the Fast Decoupled Power Flow for Networks with high R/X ratios, Proceedings of PICA Conference, pp 360?363

    Google Scholar 

  25. Raji?i? D, Bose A (1988) A modification to the Fast Decoupled Power Flow for Networks with high R/X ratios. IEEE Trans Power Syst 3(2):743?746

    Article  Google Scholar 

  26. Borkowska B (1974) Probabilistic load flow. IEEE Trans Power App Syst 93(3):752?755

    Article  Google Scholar 

  27. Allan RN, Borkowska B, Grigg CH (1974) Probabilistic Analysis of Power Flows. Proc Inst Electr Eng 121(12):1551?1556

    Article  Google Scholar 

  28. Allan RN, Leite da Silva AM, Burchett RC (1981) Evaluation methods and accuracy in probabilistic load flow solutions. IEEE Trans Power App Syst 100(5):2539?2546

    Article  Google Scholar 

  29. Leite da Silva AM, Ribeiro SMP, Arienti VL et al (1990) Probabilistic load flow techniques applied to power system expansion planning. IEEE Trans Power Syst 5(4):1047?1053

    Article  Google Scholar 

  30. Jorgensen P, Christensen JS, Tande JO (1998) Probabilistic load flow calculation using Monte Carlo techniques for distribution network with wind turbines. In: Proceedings of the 8th international conference on harmonics and quality of power 2, pp 1146?1151

    Google Scholar 

  31. Allan RN, Grigg CH, Al-Shakarchi MRG (1976) Numerical techniques in probabilistic load flow problems. Int J Num Methods Eng 10:853?860

    Article  MATH  Google Scholar 

  32. Leite da Silva AM, Arienti VL (1990) Probabilistic load flow by a multilinear simulation algorithm. Proc Inst Electr Eng Part C 137(4):276?282

    Google Scholar 

  33. Su CL (2005) Probabilistic load-flow computation using point estimate method. IEEE Trans Power Syst 20(4):1843?1851

    Article  Google Scholar 

  34. A?kovski R (1989) Contribution on methods for planning and development of power systems using Monte Carlo simulation. PhD thesis, Faculty of Electrical Engineering, Skopje

    Google Scholar 

  35. Todorovski M (1995) Approximate calculation of power flows thought high voltage network. Thesis, Faculty of Electrical Engineering, Skopje

    Google Scholar 

  36. Zhu J (2009) Optimization of power system operation. Wiley, Piscataway, NJ

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Čepin .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Čepin, M. (2011). Methods for Power Flow Analysis. In: Assessment of Power System Reliability. Springer, London. https://doi.org/10.1007/978-0-85729-688-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-688-7_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-687-0

  • Online ISBN: 978-0-85729-688-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics