Skip to main content

Robust Digital Control Design

  • Chapter
  • 5616 Accesses

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

An adaptive control system has to be built on top of a robust digital control system. Therefore robustness issues for the underlying controller and the shaping of the sensitivity functions for various possible values of the plant parameters are very important. After a review of some basic robustness concepts, a methodology for shaping the sensitivity functions is presented. Its application is illustrated in the context of adaptive control of a flexible transmission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Robustness with respect to plant model uncertainties is not a god given property for some control strategies. It is the wise choice of some design parameters which can assure the robustness of a given control strategy in a specific context.

  2. 2.

    At a given frequency the point belonging to the Nyquist plot of the true plant model lies in a disc of a given radius centered on the corresponding point belonging to the Nyquist plot of the nominal model.

  3. 3.

    The criterion remains valid in the case of poles zeros cancellations. The number of encirclements should be equal to the number of unstable open-loop poles without taking into account the possible cancellations.

  4. 4.

    There are some “pathological” systems \(\frac{B(z^{-1})}{A(z^{-1})}\), with unstable poles and zeros which can be stabilized only with open-loop unstable controllers.

  5. 5.

    See Sung and Hara (1988) for a proof. In the case of unstable open-loop systems but stable in closed loop, this integral is positive.

  6. 6.

    The bilinear transformation assures a better approximation of a continuous-time model by a discrete-time model in the frequency domain than the replacement of differentiation by a difference, i.e. s=(1−z −1)T s .

  7. 7.

    The factor γ has no effect on the final result (coefficients of R and S). It is possible, however, to implement the filter without normalizing the numerator coefficients.

  8. 8.

    To be download from the web site (http://landau-bookic.lag.ensieg.inpg.fr).

  9. 9.

    Available on the website (http://landau-bookic.lag.ensieg.inpg.fr).

References

  • Adaptech (1988) WimPim + (includes, WinPIM, WinREG and WinTRAC) system identification and control software. User’s manual. 4, rue du Tour de l’Eau, 38400 St. Martin-d’Hères, France

    Google Scholar 

  • Anderson BDO, Moore J (1971) Linear optimal control. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Åström KJ, Wittenmark B (1984) Computer controlled systems, theory and design. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Doyle JC, Francis BA, Tannenbaum AR (1992) Feedback control theory. MacMillan, New York

    Google Scholar 

  • Fenot C, Rolland F, Vigneron G, Landau ID (1993) Open loop adaptive digital control in hot-dip galvanizing. Control Eng Pract 1(5):779–790

    Article  Google Scholar 

  • Green M, Limebeer DJN (1995) Linear robust control. Prentice Hall, New York

    MATH  Google Scholar 

  • Kwakernaak H (1993) Robust control and H -optimization—a tutorial. Automatica 29:255–273

    Article  MathSciNet  MATH  Google Scholar 

  • Kwakernaak H (1995) Symmetries in control system design. In: Isidori A (ed) Trends in control. Springer, Heidelberg, pp 17–52

    Google Scholar 

  • Landau ID (1993b) Identification et Commande des Systèmes, 2nd edn. Série Automatique. Hermès, Paris

    MATH  Google Scholar 

  • Landau ID (1995) Robust digital control of systems with time delay (the Smith predictor revisited). Int J Control 62(2):325–347

    Article  MATH  Google Scholar 

  • Landau ID, Karimi A (1996) Robust digital control using the combined pole placement sensitivity function shaping: an analytical solution. In: Proc of WAC, vol 4, Montpellier, France, pp 441–446

    Google Scholar 

  • Landau ID, Karimi A (1998) Robust digital control using pole placement with sensitivity function shaping method. Int J Robust Nonlinear Control 8:191–210

    Article  MathSciNet  MATH  Google Scholar 

  • Landau ID, Zito G (2005) Digital control systems—design, identification and implementation. Springer, London

    Google Scholar 

  • Landau ID, Rey D, Karimi A, Voda-Besançon A, Franco A (1995a) A flexible transmission system as a benchmark for robust digital control. Eur J Control 1(2):77–96

    Google Scholar 

  • Landau ID, Karimi A, Voda-Besançon A, Rey D (1995b) Robust digital control of flexible transmissions using the combined pole placement/sensitivity function shaping method. Eur J Control 1(2):122–133

    Google Scholar 

  • Langer J, Constantinescu A (1999) Pole placement design using convex optimisation criteria for the flexible transmission benchmark: robust control benchmark: new results. Eur J Control 5(2–4):193–207

    Google Scholar 

  • Langer J, Landau ID (1999) Combined pole placement/sensitivity function shaping method using convex optimization criteria. Automatica 35(6):1111–1120

    Article  MathSciNet  MATH  Google Scholar 

  • Morari M, Zafiriou E (1989) Robust process control. Prentice Hall International, Englewood Cliffs

    Google Scholar 

  • Procházka H, Landau ID (2003) Pole placement with sensitivity function shaping using 2nd order digital notch filters* 1. Automatica 39(6):1103–1107

    Article  MathSciNet  MATH  Google Scholar 

  • Sung HK, Hara S (1988) Properties of sensitivity and complementary sensitivity functions in single-input single-output digital systems. Int J Control 48(6):2429–2439

    Article  MathSciNet  MATH  Google Scholar 

  • Zames G (1981) Feedback and optimal sensibility: model reference transformations, multiplicative seminorms and approximate inverses. IEEE Trans Autom Control 26:301–320

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Doré Landau .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Landau, I.D., Lozano, R., M’Saad, M., Karimi, A. (2011). Robust Digital Control Design. In: Adaptive Control. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-0-85729-664-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-664-1_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-663-4

  • Online ISBN: 978-0-85729-664-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics