Digital Control Strategies

  • Ioan Doré LandauEmail author
  • Rogelio Lozano
  • Mohammed M’Saad
  • Alireza Karimi
Part of the Communications and Control Engineering book series (CCE)


Building an adaptive control system supposes that in the case in which the plant parameters are known, a controller achieving the desired performances can be designed. Therefore this chapter reviews a number of digital control strategies used for the design of the underlying controller whose parameters will be adapted. Pole placement, tracking and regulation with independent objectives, minimum variance control, generalized predictive control and linear quadratic control are presented in detail.


Pole Placement Internal Model Control Independent Objective Generalize Predictive Control Disturbance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson BDO, Moore J (1971) Linear optimal control. Prentice Hall, Englewood Cliffs zbMATHGoogle Scholar
  2. Åström KJ, Wittenmark B (1973) On self-tuning regulators. Automatica 9:185–199 zbMATHCrossRefGoogle Scholar
  3. Åström KJ, Hagander P, Sternby J (1984) Zeros of sampled systems. Automatica 20:31–38 zbMATHCrossRefGoogle Scholar
  4. Clarke D, Gawthrop PJ (1975) A self-tuning controller. Proc IEEE 122:929–934 Google Scholar
  5. Clarke D, Gawthrop PJ (1979) Self-tuning control. Proc IEEE 126(6):633–640 Google Scholar
  6. Clarke D, Mohtadi C (1989) Properties of generalized predictive control. Automatica 25:859–876 MathSciNetzbMATHCrossRefGoogle Scholar
  7. Clarke DW, Scatollini R (1991) Constrained receding horizon predictive control. In: Proc IEE-D, vol 138, pp 347–354 Google Scholar
  8. Clarke D, Tuffs P, Mohtadi C (1987) Generalized predictive control. Automatica 23:137–160 zbMATHCrossRefGoogle Scholar
  9. De Nicolao G, Scatollini R (1994) Stability and output terminal constraints in predictive control. In: Clarke DW (ed) Advances in model based predictive control. Oxford University Press, Oxford Google Scholar
  10. Francis BA, Wonham WM (1976) The internal model principle of control theory. Automatica 12:457–465 MathSciNetzbMATHCrossRefGoogle Scholar
  11. Franklin GF, Powell JD, Workman M (1990) Digital control of dynamic systems, 2nd edn. Addison Wesley, Reading zbMATHGoogle Scholar
  12. Goodwin GC, Sin KS (1984) Adaptive filtering prediction and control. Prentice Hall, New York zbMATHGoogle Scholar
  13. Ionescu T, Monopoli R (1977) Discrete model reference adaptive control with an augmented error signal. Automatica 13:507–518 zbMATHCrossRefGoogle Scholar
  14. Irving E, Falinower CM, Fonte C (1986) Adaptive generalized predictive control with multiple reference models. In: Proc 2nd IFAC workshop on adaptive systems in control and signal processing, Lund, Sweden Google Scholar
  15. Lam K (1982) Design of stochastic discrete-time linear optimal control. Int J Syst Sci 13(19):979–1011 zbMATHCrossRefGoogle Scholar
  16. Landau ID (1979) Adaptive control—the model reference approach. Marcel Dekker, New York zbMATHGoogle Scholar
  17. Landau ID (1981) Model reference adaptive controllers and stochastic self-tuning regulators: a unified approach. Trans ASME, J Dyn Syst Meas Control 103:404–414 zbMATHCrossRefGoogle Scholar
  18. Landau ID (1990b) System identification and control design. Prentice Hall, Englewood Cliffs zbMATHGoogle Scholar
  19. Landau ID (1993b) Identification et Commande des Systèmes, 2nd edn. Série Automatique. Hermès, Paris zbMATHGoogle Scholar
  20. Landau ID, Lozano R (1981) Unification and evaluation of discrete-time explicit model reference adaptive designs. Automatica 17(4):593–611 MathSciNetzbMATHCrossRefGoogle Scholar
  21. Morari M, Zafiriou E (1989) Robust process control. Prentice Hall International, Englewood Cliffs Google Scholar
  22. Mosca E, Zhang J (1992) Stable redesign of predictive control. Automatica 28(6):1229–1234 MathSciNetzbMATHCrossRefGoogle Scholar
  23. M’Saad M, Sanchez G (1992) Partial state model reference adaptive control of multivariable systems. Automatica 28(6):1189–1194 MathSciNetzbMATHCrossRefGoogle Scholar
  24. M’Saad M, Duque M, Landau ID (1986) Practical implications of recent results in robustness of adaptive control schemes. In: Proc of IEEE 25th CDC, Athens, Greece Google Scholar
  25. M’Saad M, Landau ID, Samaan M (1990) Further evaluation of the partial state reference model adaptive control design. Int J Adapt Control Signal Process 4(2):133–146 CrossRefGoogle Scholar
  26. M’Saad M, Dugard L, Hammad S (1993a) A suitable generalized predictive adaptive controller case study: control of a flexible arm. Automatica 29(3):589–608 MathSciNetzbMATHCrossRefGoogle Scholar
  27. Richalet J, Rault A, Testud JL, Papon J (1978) Model predictive heuristic control: applications to industrial processes. Automatica 14:413–428 CrossRefGoogle Scholar
  28. Samson C (1982) An adaptive LQ controller for non-minimum phase systems. Int J Control 3:389–397 MathSciNetzbMATHGoogle Scholar
  29. Tsypkin YZ (1993) Robust internal model control. Trans ASME, J Dyn Syst Meas Control 115:419–425 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Ioan Doré Landau
    • 1
    Email author
  • Rogelio Lozano
    • 2
  • Mohammed M’Saad
    • 3
  • Alireza Karimi
    • 4
  1. 1.Département d’AutomatiqueGIPSA-LAB (CNRS/INPG/UJF)St. Martin d’HeresFrance
  2. 2.UMR-CNRS 6599, Centre de Recherche de Royalieu, Heuristique et Diagnostic des Systèmes ComplexesUniversité de Technologie de CompiègneCompiègneFrance
  3. 3.Centre de Recherche (ENSICAEN), Laboratoire GREYCÉcole Nationale Supérieure d’Ingénieurs de CaenCaen CedexFrance
  4. 4.Laboratoire d’AutomatiqueÉcole Polytechnique Fédérale de LausanneLaussanneSwitzerland

Personalised recommendations