Advertisement

Multimodel Adaptive Control with Switching

  • Ioan Doré Landau
  • Rogelio Lozano
  • Mohammed M’Saad
  • Alireza Karimi
Part of the Communications and Control Engineering book series (CCE)

Abstract

The principles of adaptive control with switching are presented. This method insures high control performance in the presence of large and abrupt parameter variations. The stability of this type of adaptive control is studied and shown to be guaranteed with a minimum dwell-time between switchings. An application of adaptive control with switching and tuning to a flexible transmission system is presented. The advantages of this scheme with respect to classical adaptive control and fixed robust control are illustrated via some experimental results. The use of CLOE adaptation in the adaptive control with switching will also improve the performance of the system in the tuning phase.

Keywords

Adaptive Control Adaptation Algorithm Robust Controller Switching System Switching Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson BDO, Brinsmead TS, Bruyne FD, Hespanha J, Liberzon D, Morse AS (2000) Multiple model adaptive control. Part 1: Finite controller coverings. Int J Robust Nonlinear Control 10(11–12):909–929 zbMATHCrossRefGoogle Scholar
  2. Athans M, Chang CB (1976) Adaptive estimation and parameter identification using multiple model estimation algorithms. Technical report 28, MIT Lincoln Laboratory Google Scholar
  3. Boyd S, Ghaoui LE, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, Philadelphia zbMATHGoogle Scholar
  4. Chang CB, Athans M (1978) State estimation for discrete systems with switching parameters. IEEE Trans Aerosp Electron Syst 14(3):418–425 MathSciNetCrossRefGoogle Scholar
  5. Fekri S, Athans M, Pascoal A (2006) Issues, progress and new results in robust adaptive control. Int J Adapt Control Signal Process 20:519–579 MathSciNetzbMATHCrossRefGoogle Scholar
  6. Fu M, Barmish BR (1986) Adaptive stabilization of linear systems via switching control. IEEE Trans Autom Control 31:1097–1103 MathSciNetzbMATHCrossRefGoogle Scholar
  7. Geromel JC, Colaneri P (2006a) Stability and stabilization of continuous-time switched linear systems. SIAM J Control Optim 45(5):1915–1930 MathSciNetzbMATHCrossRefGoogle Scholar
  8. Geromel JC, Colaneri P (2006b) Stability and stabilization of discrete time switched systems. Int J Control 45(5):719–728 CrossRefGoogle Scholar
  9. Hespanha J, Liberzon D, Morse AS, Anderson BDO, Brinsmead TS, Bruyne FD (2001) Multiple model adaptive control. Part 2: Switching. Int J Robust Nonlinear Control 11(5):479–496 zbMATHCrossRefGoogle Scholar
  10. Karimi A (1997) Conception des régulateurs numériques robustes et adaptatifs. PhD thesis, Institut National Polytechnique de Grenoble, LAG, Grenoble, France Google Scholar
  11. Karimi A, Landau ID (2000) Robust adaptive control of a flexible transmission system using multiple models. IEEE Trans Control Syst Technol 8(2):321–331 MathSciNetCrossRefGoogle Scholar
  12. Karimi A, Landau ID, Motee N (2001) Effects of the design parameters of multimodel adaptive control on the performance of a flexible transmission system. Int J Adapt Control Signal Process 15(3):335–352 zbMATHCrossRefGoogle Scholar
  13. Kidron O, Yaniv O (1995) Robust control of uncertain resonant systems. Eur J Control 1(2):104–112 Google Scholar
  14. Landau ID, Rey D, Karimi A, Voda-Besançon A, Franco A (1995a) A flexible transmission system as a benchmark for robust digital control. Eur J Control 1(2):77–96 Google Scholar
  15. Liberzon D (2003) Switching in systems and control. Birkhauser, Basel zbMATHCrossRefGoogle Scholar
  16. Martensson B (1986) Adaptive stabilization. PhD thesis, Lund Institute of Technology, Lund, Sweden Google Scholar
  17. Miller DE (1994) Adaptive stabilization using a nonlinear time-varying controller. IEEE Trans Autom Control 39:1347–1359 zbMATHCrossRefGoogle Scholar
  18. Miller DE, Davison EJ (1989) An adaptive controller which provides Lyapunov stability. IEEE Trans Autom Control 34:599–609 MathSciNetzbMATHCrossRefGoogle Scholar
  19. Narendra KS, Balakrishnan J (1997) Adaptive control using multiple models. IEEE Trans Autom Control AC-42:171–187 MathSciNetCrossRefGoogle Scholar
  20. Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM Rev 38(1):49–95 MathSciNetzbMATHCrossRefGoogle Scholar
  21. Visual Solutions (1995) Vissim—User manual, version 2.0. Westford, MA, USA Google Scholar
  22. Zhou K (1998) Essentials of robust control. Prentice Hall, New York Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Ioan Doré Landau
    • 1
  • Rogelio Lozano
    • 2
  • Mohammed M’Saad
    • 3
  • Alireza Karimi
    • 4
  1. 1.Département d’AutomatiqueGIPSA-LAB (CNRS/INPG/UJF)St. Martin d’HeresFrance
  2. 2.UMR-CNRS 6599, Centre de Recherche de Royalieu, Heuristique et Diagnostic des Systèmes ComplexesUniversité de Technologie de CompiègneCompiègneFrance
  3. 3.Centre de Recherche (ENSICAEN), Laboratoire GREYCÉcole Nationale Supérieure d’Ingénieurs de CaenCaen CedexFrance
  4. 4.Laboratoire d’AutomatiqueÉcole Polytechnique Fédérale de LausanneLaussanneSwitzerland

Personalised recommendations