Indirect Adaptive Control

  • Ioan Doré Landau
  • Rogelio Lozano
  • Mohammed M’Saad
  • Alireza Karimi
Part of the Communications and Control Engineering book series (CCE)


Indirect adaptive control is a widely applicable adaptive control strategy. In real-time, it combines plant model parameter estimation in closed loop with the redesign of the controller. Adaptive pole placement and its robustified version, together with adaptive generalized predictive control constitute the core of the chapter. Adaptive linear quadratic control is also presented. Application of various strategies for the indirect adaptive control of a flexible transmission illustrates the methodology presented in this chapter.


Controller Parameter External Excitation Pole Placement Unmodeled Dynamic Adaptation Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson BDO, Johnson CR (1982) Exponential convergence of adaptive identification and control algorithms. Automatica 18(1):1–13 MathSciNetzbMATHCrossRefGoogle Scholar
  2. Anderson BDO, Johnstone RM (1985) Global adaptive pole positioning. IEEE Trans Autom Control AC-30(4):11–12 MathSciNetCrossRefGoogle Scholar
  3. Barmish R, Ortega R (1991) On the radius of stabilizability of LTI systems: application to projection implementation in indirect adaptive control. Int J Adapt Control Signal Process 5:251–258 zbMATHCrossRefGoogle Scholar
  4. Bitmead RR, Gevers M, Wertz V (1990) Adaptive optimal control. Prentice-Hall, New York zbMATHGoogle Scholar
  5. Clarke D, Mohtadi C (1989) Properties of generalized predictive control. Automatica 25:859–876 MathSciNetzbMATHCrossRefGoogle Scholar
  6. de Larminat P (1980) Unconditional stabilizers for non minimum phase systems. In: Proc int symp on adaptive systems, Ruhr-University, Bochum Google Scholar
  7. de Larminat P (1984) On the stabilization condition in indirect adaptive control. Automatica 20:793–795 MathSciNetzbMATHCrossRefGoogle Scholar
  8. de Larminat P (1986) Une solution robuste au problème de la stabilité dans la commande adaptative indirecte passive. In: Landau ID, Dugard L (eds) Commande adaptative: aspects pratiques et théoriques. Masson, Paris Google Scholar
  9. de Larminat P, Raynaud HF (1988) A robust solution to the admissibility problem in indirect adaptive control without persistency excitation. Int J Adapt Control Signal Process 2:95–110 zbMATHCrossRefGoogle Scholar
  10. Eliott H (1985) Global stability of adaptive pole placement algorithm. IEEE Trans Autom Control 30:348–356 CrossRefGoogle Scholar
  11. Giri F, M’Saad M, Dion JM, Dugard L (1989) A globally convergent pole placement indirect adaptive controller. IEEE Trans Autom Control AC-34:353–356 MathSciNetCrossRefGoogle Scholar
  12. Giri F, M’Saad M, Dion JM, Dugard L (1990) A general lemma for the stability analysis of discrete-time adaptive control. Int J Control 51:283–288 MathSciNetzbMATHCrossRefGoogle Scholar
  13. Giri F, M’Saad M, Dion JM, Dugard L (1991) On the robustness of discrete-time indirect adaptive (linear) controllers. Automatica 27:153–160 MathSciNetzbMATHCrossRefGoogle Scholar
  14. Goodwin GC, Sin KS (1984) Adaptive filtering prediction and control. Prentice Hall, New York zbMATHGoogle Scholar
  15. Goodwin GC, Teoh EK (1985) Persistency of excitation in presence of possibly unbounded signals. IEEE Trans Autom Control AC-30:595–597 MathSciNetCrossRefGoogle Scholar
  16. Guo L (1996) Self-convergence of weighted least squares with applications to stochastic adaptive control. IEEE Trans Autom Control AC-41(1):79–89 Google Scholar
  17. Kailath T (1980) Linear systems. Prentice-Hall, New York zbMATHGoogle Scholar
  18. Kreisselmeier G (1986) A robust indirect adaptive control approach. Int J Control 43:161–175 zbMATHCrossRefGoogle Scholar
  19. Kreisselmeier G, Smith MC (1986) Stable adaptive regulation of arbitrary nth order plants. IEEE Trans Autom Control AC-31:299–305 MathSciNetCrossRefGoogle Scholar
  20. Lam K (1982) Design of stochastic discrete-time linear optimal control. Int J Syst Sci 13(19):979–1011 zbMATHCrossRefGoogle Scholar
  21. Lancaster P, Tismenetsky M (1985) The theory of matrices, 2nd edn. Academic Press, New York zbMATHGoogle Scholar
  22. Landau ID, Karimi A (1997b) Recursive algorithms for identification in closed loop: a unified approach and evaluation. Automatica 33(8):1499–1523 MathSciNetzbMATHCrossRefGoogle Scholar
  23. Landau ID, Rey D, Karimi A, Voda-Besançon A, Franco A (1995a) A flexible transmission system as a benchmark for robust digital control. Eur J Control 1(2):77–96 Google Scholar
  24. Langer J, Landau ID (1999) Combined pole placement/sensitivity function shaping method using convex optimization criteria. Automatica 35(6):1111–1120 MathSciNetzbMATHCrossRefGoogle Scholar
  25. Lozano R (1989) Robust adaptive regulation without persistent excitation. IEEE Trans Autom Control AC-34:1260–1267 CrossRefGoogle Scholar
  26. Lozano R (1992) Singularity-free adaptive pole placement without resorting to persistency of excitation detailed analysis for first order systems. Automatica 28:27–33 MathSciNetzbMATHCrossRefGoogle Scholar
  27. Lozano R, Goodwin GC (1985) A globally convergent pole-placement algorithm without persistency of excitation requirement. IEEE Trans Autom Control AC-30:795–797 CrossRefGoogle Scholar
  28. Lozano R, Zhao X (1994) Adaptive pole placement without excitation probing signals. IEEE Trans Autom Control AC-39(1):47–58 MathSciNetCrossRefGoogle Scholar
  29. Lozano R, Dion JM, Dugard L (1993) Singularity-free adaptive pole placement for second order systems. IEEE Trans Autom Control AC-38:104–108 MathSciNetCrossRefGoogle Scholar
  30. Mareels I, Polderman JW (1996) Adaptive systems: an introduction. Birkhauser, Basel zbMATHGoogle Scholar
  31. Middleton RH, Goodwin GC, Hill DJ, Mayne DQ (1988) Design issues in adaptive control. IEEE Trans Autom Control AC-33(1):50–58 MathSciNetCrossRefGoogle Scholar
  32. M’Saad M, Chebassier J (1997) Simart: un progiciel pour l’automatique et ses applications. In: Proc des journées d’études sur les logiciels, Nancy, France Google Scholar
  33. M’Saad M, Sanchez G (1992) Partial state model reference adaptive control of multivariable systems. Automatica 28(6):1189–1194 MathSciNetzbMATHCrossRefGoogle Scholar
  34. M’Saad M, Dugard L, Hammad S (1993a) A suitable generalized predictive adaptive controller case study: control of a flexible arm. Automatica 29(3):589–608 MathSciNetzbMATHCrossRefGoogle Scholar
  35. M’Saad M, Giri F, Dion JM, Dugard L (1993b) Techniques in discrete time robust adaptive control. In: Leondes CT (ed) Control and dynamical systems, vol 56. Academic Press, San Diego, pp 93–161 Google Scholar
  36. Ossman KA, Kamen ED (1987) Adaptive regulation of MIMO linear discrete-time systems without requiring a persistent excitation. IEEE Trans Autom Control AC-32:397–404 MathSciNetCrossRefGoogle Scholar
  37. Polderman JW (1989) A state space approach to the problem of adaptive pole assignment. Math Control Signals Syst 2(1):71–94 MathSciNetzbMATHCrossRefGoogle Scholar
  38. Rohrs C, Valavani L, Athans M, Stein G (1985) Robustness of continuous time adaptive control algorithms in the presence of unmodeled dynamics. IEEE Trans Autom Control AC-30(9):881–889 CrossRefGoogle Scholar
  39. Samson C (1982) An adaptive LQ controller for non-minimum phase systems. Int J Control 3:389–397 MathSciNetzbMATHGoogle Scholar
  40. Visual Solutions (1995) Vissim—User manual, version 2.0. Westford, MA, USA Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Ioan Doré Landau
    • 1
  • Rogelio Lozano
    • 2
  • Mohammed M’Saad
    • 3
  • Alireza Karimi
    • 4
  1. 1.Département d’AutomatiqueGIPSA-LAB (CNRS/INPG/UJF)St. Martin d’HeresFrance
  2. 2.UMR-CNRS 6599, Centre de Recherche de Royalieu, Heuristique et Diagnostic des Systèmes ComplexesUniversité de Technologie de CompiègneCompiègneFrance
  3. 3.Centre de Recherche (ENSICAEN), Laboratoire GREYCÉcole Nationale Supérieure d’Ingénieurs de CaenCaen CedexFrance
  4. 4.Laboratoire d’AutomatiqueÉcole Polytechnique Fédérale de LausanneLaussanneSwitzerland

Personalised recommendations