Introduction to Adaptive Control

  • Ioan Doré Landau
  • Rogelio Lozano
  • Mohammed M’Saad
  • Alireza Karimi
Part of the Communications and Control Engineering book series (CCE)


The aim of this introductory chapter is to emphasize the basic concepts pertinent to adaptive control and to present the significant adaptive control schemes. The final part of the chapter reviews briefly the various applications considered throughout the book.


Adaptive Control Controller Parameter Adaptive Control Scheme Adaptive Control System Model Reference Adaptive Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amara FB, Kabamba PT, Ulsoy AG (1999a) Adaptive sinusoidal disturbance rejection in linear discrete-time systems—Part I: Theory. J Dyn Syst Meas Control 121:648–654 CrossRefGoogle Scholar
  2. Amara FB, Kabamba PT, Ulsoy AG (1999b) Adaptive sinusoidal disturbance rejection in linear discrete-time systems—Part II: Experiments. J Dyn Syst Meas Control 121:655–659 CrossRefGoogle Scholar
  3. Anderson BDO, Bitmead RR, Johnson CR, Kokotovic PV, Kosut R, Mareels I, Praly L, Riedle BD (1986) Stability of adaptive systems—passivity and averaging analysis. MIT Press, Cambridge Google Scholar
  4. Arimoto S, Miyazaki F (1984) Stability and robustness of PID feedback control of robot manipulators sensor capability. In: Brady M, Paul R (eds) Robotics research. MIT Press, Cambridge, pp 783–799 Google Scholar
  5. Armstrong B, Amin B (1996) PID control in the presence of static friction: a comparison of algebraic and describing function analysis. Automatica 32(5):679–692 MathSciNetzbMATHCrossRefGoogle Scholar
  6. Åström KJ, Wittenmark B (1973) On self-tuning regulators. Automatica 9:185–199 zbMATHCrossRefGoogle Scholar
  7. Åström KJ, Wittenmark B (1995) Adaptive control, 2nd edn. Addison Wesley, Boston zbMATHGoogle Scholar
  8. Åström KJ, Hagander P, Sternby J (1984) Zeros of sampled systems. Automatica 20:31–38 zbMATHCrossRefGoogle Scholar
  9. Besançon A (1997) Estimation of relay-type non-linearity on relay systems analysis. In: Proc 97 IFAC symp “System, structure and control”, Bucarest, Romania Google Scholar
  10. Bethoux G, Courtiol B (1973) A hyperstable discrete model reference adaptive control systems. In: Proc 3rd IFAC symp on “Sensitivity, adaptivity and optimality”. ISA, Ischia, Italy, pp 282–289 Google Scholar
  11. Bitmead RR (1993) Iterative control design approaches. In: Prepr 12th IFAC World congress, vol 9, Sydney, Australia, pp 381–384 Google Scholar
  12. Brogliato B, Lozano R (1994) Adaptive control of systems of the form \(\dot{x}=\theta_{1}^{t}f(x)+\theta_{2}^{t}g(x)u\) with reduced knowledge of the plant parameters. IEEE Trans Autom Control AC-39(8):1764–1768 MathSciNetCrossRefGoogle Scholar
  13. Butchart RL, Shakcloth B (1966) Synthesis of model reference adaptive control systems by Lyapunov’s second method. In: Proc 2nd IFAC symp on theory of self-adaptive control systems. Plenum, Teddington, pp 145–152 Google Scholar
  14. Canudas C, Olsson H, Åström KJ, Lichinsky P (1995) A new model for control of systems with friction. IEEE Trans Autom Control AC-40(3):419–425 CrossRefGoogle Scholar
  15. Chaoui F, Giri F, Dion JM, M’Saad M, Dugard L (1996a) Direct adaptive control subject to input amplitude constraints. In: Proc IEEE—CDC, Kobe, Japan Google Scholar
  16. Chaoui F, Giri F, Dion JM, M’Saad M, Dugard L (1996b) Indirect adaptive control in the presence of input saturation constraints. In: Proc IEEE—CDC, Kobe, Japan Google Scholar
  17. Clarke D, Gawthrop PJ (1975) A self-tuning controller. Proc IEEE 122:929–934 Google Scholar
  18. Clarke D, Tuffs P, Mohtadi C (1987) Generalized predictive control. Automatica 23:137–160 zbMATHCrossRefGoogle Scholar
  19. Dahhou B, Najim K, M’Saad M, Youlal B (1983) Model reference adaptive control of an industrial phosphate drying furnace. In: Proc IFAC workshop “Adaptive systems in control and signal processing”. Pergamon, San Fransisco, pp 315–321 Google Scholar
  20. Datta A (1998) Adaptive internal model control. Springer, London CrossRefGoogle Scholar
  21. de Larminat P (1980) Unconditional stabilizers for non minimum phase systems. In: Proc int symp on adaptive systems, Ruhr-University, Bochum Google Scholar
  22. de Mathelin M, Bodson M (1995) Multivariable model reference adaptive control without constraints on the high frequency gain matrix. Automatica 31:597–604 MathSciNetzbMATHCrossRefGoogle Scholar
  23. Dion JM, Dugard L, Carrillo J (1988) Interactor and multivariable adaptive control. IEEE Trans Autom Control AC-33:399–401 CrossRefGoogle Scholar
  24. Dugard L, Dion JM (1985) Direct multivariable adaptive control. Int J Control 42(6):1251–1281 zbMATHCrossRefGoogle Scholar
  25. Egardt B (1979) Stability of adaptive controllers. Lectures notes in control and information sciences. Springer, Heidelberg zbMATHCrossRefGoogle Scholar
  26. Espinoza-Perez G, Ortega R (1995) An output feedback globally stable controller for induction motors. IEEE Trans Autom Control AC-40(1):138–143 CrossRefGoogle Scholar
  27. Feldbaum A (1965) Optimal control theory. Academic Press, New York Google Scholar
  28. Feng G, Zhang C, Palaniswami M (1994) Stability of input amplitude constrained adaptive pole placement control systems. Automatica 30:1065–1070 MathSciNetzbMATHCrossRefGoogle Scholar
  29. Fenot C, Rolland F, Vigneron G, Landau ID (1993) Open loop adaptive digital control in hot-dip galvanizing. Control Eng Pract 1(5):779–790 CrossRefGoogle Scholar
  30. Garrido-Moctezuma R, Lozano R, Suarez DA (1993) MRAC with unknown relative degree. Int J Adapt Control Signal Process 7(5):457–474 MathSciNetCrossRefGoogle Scholar
  31. Gevers M (1993) Towards a joint design of identification and control. In: Trentelman HL, Willems JC (eds) Essays on control: perspectives in the theory and its applications. Birkhäuser, Boston, pp 111–152 Google Scholar
  32. Gilbart JW, Winston GC (1974) Adaptive compensation for an optical tracking telescope. Automatica 10:125–131 CrossRefGoogle Scholar
  33. Goodwin GC, Sin KS (1984) Adaptive filtering prediction and control. Prentice Hall, New York zbMATHGoogle Scholar
  34. Goodwin GC, Ramadge PJ, Caines PE (1980a) Discrete-time multivariable adaptive control. IEEE Trans Autom Control AC-25:44 MathSciNetGoogle Scholar
  35. Goodwin GC, Ramadge PJ, Caines PE (1980b) Stochastic adaptive control. SIAM J Control 18 Google Scholar
  36. Ioannou PA, Datta A (1989) Robust adaptive control: a unified approach. Proc IEEE 79:1736–1768 CrossRefGoogle Scholar
  37. Ioannou PA, Kokotovic PV (1983) Adaptive systems with reduced order models. Lecture notes in control and information sciences, vol 47. Springer, Heidelberg CrossRefGoogle Scholar
  38. Ioannou PA, Sun J (1996) Robust adaptive control. Prentice Hall, Englewood Cliffs zbMATHGoogle Scholar
  39. Ionescu T, Monopoli R (1977) Discrete model reference adaptive control with an augmented error signal. Automatica 13:507–518 zbMATHCrossRefGoogle Scholar
  40. Jacobson CA, Johnson CR, Cormick DCM, Sethares WA (2001) Stability of active noise control algorithms. IEEE Signal Process Lett 8(3):74–76 CrossRefGoogle Scholar
  41. Kalman RE (1958) Design of self-optimizing control systems. Trans ASME, J Basic Eng 80:468–478 Google Scholar
  42. Karimi A, Landau ID (2000) Robust adaptive control of a flexible transmission system using multiple models. IEEE Trans Control Syst Technol 8(2):321–331 MathSciNetCrossRefGoogle Scholar
  43. Krstic M, Kanellakopoulos I, Kokotovic P (1995) Nonlinear and adaptive control design. Wiley, New York Google Scholar
  44. Landau ID (1969a) Analyse et synthèse des commandes adaptatives à l’aide d’un modèle par des méthodes d’hyperstabilité. Automatisme 14:301–309 Google Scholar
  45. Landau ID (1969b) A‘hyperstability criterion for model reference adaptive control systems. IEEE Trans Autom Control AC-14:552–555 CrossRefGoogle Scholar
  46. Landau ID (1971) Synthesis of discrete model reference adaptive systems. IEEE Trans Autom Control AC-16:507–508 CrossRefGoogle Scholar
  47. Landau ID (1973) Design of discrete model reference adaptive systems using the positivity concept. In: Proc 3rd IFAC symp on “Sensitivity, adaptivity and optimality”. ISA, Ischia, Italy, pp 307–314 Google Scholar
  48. Landau ID (1974) A survey of model reference adaptive techniques—theory and applications. Automatica 10:353–379 zbMATHCrossRefGoogle Scholar
  49. Landau ID (1979) Adaptive control—the model reference approach. Marcel Dekker, New York zbMATHGoogle Scholar
  50. Landau ID (1981) Model reference adaptive controllers and stochastic self-tuning regulators: a unified approach. Trans ASME, J Dyn Syst Meas Control 103:404–414 zbMATHCrossRefGoogle Scholar
  51. Landau ID (1982a) Combining model reference adaptive controllers and stochastic self tuning regulators. Automatica 18(1):77–84 MathSciNetzbMATHCrossRefGoogle Scholar
  52. Landau ID (1985) Adaptive control techniques for robot manipulators—the status of the art. In: Proc IFAC symp robot control, Barcelona, Spain Google Scholar
  53. Landau ID (1990a) Algorithmes d’adaptation paramétrique. In: Dugard L, Landau ID (eds) Ecole d’Eté d’Automatique, LAG, Grenoble Google Scholar
  54. Landau ID (1993a) Evolution of adaptive control. Trans ASME, J Dyn Syst Meas Control 115:381–391 zbMATHCrossRefGoogle Scholar
  55. Landau ID, Alma M (2010) Adaptive feedforward compensation algorithms for active vibration control. In: Proc of 49th IEEE conf on decision and control, 2010, IEEE-CDC, Atlanta, USA, pp 3626–3631 Google Scholar
  56. Landau ID, Horowitz R (1988) Synthesis of adaptive controllers for robot manipulators using a passive feedback systems approach. In: Proc IEEE int conf robotics and automation. Also in Int J Adapt Control Signal Process 3:23–38 (1989) Google Scholar
  57. Landau ID, Karimi A (1997a) An output error recursive algorithm for unbiased identification in closed loop. Automatica 33(5):933–938 MathSciNetzbMATHCrossRefGoogle Scholar
  58. Landau ID, Karimi A (1997b) Recursive algorithms for identification in closed loop: a unified approach and evaluation. Automatica 33(8):1499–1523 MathSciNetzbMATHCrossRefGoogle Scholar
  59. Landau ID, Lozano R (1981) Unification and evaluation of discrete-time explicit model reference adaptive designs. Automatica 17(4):593–611 MathSciNetzbMATHCrossRefGoogle Scholar
  60. Landau ID, Normand-Cyrot D, Montano A (1987) Adaptive control of a class of nonlinear discrete-time systems: application to a heat exchanger. In: Proc IEEE CDC, Los Angeles, USA, pp 1990–1995 Google Scholar
  61. Landau ID, Rey D, Karimi A, Voda-Besançon A, Franco A (1995a) A flexible transmission system as a benchmark for robust digital control. Eur J Control 1(2):77–96 Google Scholar
  62. Landau ID, Constantinescu A, Rey D (2005) Adaptive narrow band disturbance rejection applied to an active suspension—an internal model principle approach. Automatica 41(4):563–574 MathSciNetzbMATHCrossRefGoogle Scholar
  63. Langer J, Landau ID (1996) Improvement of robust digital control by identification in closed loop: application to a 360° flexible arm. Control Eng Pract 4(8):1079–1088 CrossRefGoogle Scholar
  64. Lozano R (1992) Singularity-free adaptive pole placement without resorting to persistency of excitation detailed analysis for first order systems. Automatica 28:27–33 MathSciNetzbMATHCrossRefGoogle Scholar
  65. Lozano R, Brogliato B (1992a) Adaptive control of a simple nonlinear system without a-priori information on the plant parameters. IEEE Trans Autom Control AC-37(1):30–37 MathSciNetCrossRefGoogle Scholar
  66. Lozano R, Brogliato B (1992b) Adaptive control of robot manipulators with flexible joints. IEEE Trans Autom Control AC-37(2):174–181 MathSciNetCrossRefGoogle Scholar
  67. Lozano R, Brogliato B (1992c) Adaptive hybrid force-position control for redundant manipulators. IEEE Trans Autom Control AC-37(10):1501–1505 MathSciNetCrossRefGoogle Scholar
  68. Lozano R, Zhao X (1994) Adaptive pole placement without excitation probing signals. IEEE Trans Autom Control AC-39(1):47–58 MathSciNetCrossRefGoogle Scholar
  69. Marino R, Tomei P (1995) Nonlinear control design: geometric, adaptive, robust. Prentice-Hall, Englewood Cliffs Google Scholar
  70. Marino R, Peresada S, Tomei P (1996) Adaptive observer-based control of induction motors with unknown rotor resistance. Int J Adapt Control Signal Process 10:345–363 zbMATHCrossRefGoogle Scholar
  71. Morse AS (1980) Global stability of parameter adaptive control systems. IEEE Trans Autom Control AC-25:433–440 MathSciNetCrossRefGoogle Scholar
  72. Morse AS (1995) Control using logic-based switching. In: Isidori A (ed) Trends in control. Springer, Heidelberg, pp 69–114 Google Scholar
  73. M’Saad M, Ortega R, Landau ID (1985) Adaptive controllers for discrete-time systems with arbitrary zeros: an overview. Automatica 21(4):413–423 MathSciNetzbMATHCrossRefGoogle Scholar
  74. Mutoh Y, Ortega R (1993) Interactor structure estimation for adaptive control of discrete-time multivariable systems. Automatica 29(3):635–347 MathSciNetzbMATHCrossRefGoogle Scholar
  75. Narendra KS, Balakrishnan J (1997) Adaptive control using multiple models. IEEE Trans Autom Control AC-42:171–187 MathSciNetCrossRefGoogle Scholar
  76. Narendra KS, Lin YH, Valavani LS (1980) Stable adaptive controller design—Part ii: Proof of stability. IEEE Trans Autom Control AC-25:440–448 CrossRefGoogle Scholar
  77. Nicosia S, Tomei P (1990) Robot control by using only joint position measurements. IEEE Trans Autom Control AC-35:1058–1061 MathSciNetCrossRefGoogle Scholar
  78. Ortega R, Spong M (1989) Adaptive motion control: a tutorial. Automatica 25(6):877–898 MathSciNetzbMATHCrossRefGoogle Scholar
  79. Ortega R, Tang Y (1989) Robustness of adaptive controllers—a survey. Automatica 25(5):651–677 MathSciNetzbMATHCrossRefGoogle Scholar
  80. Ortega R, Praly L, Landau ID (1985) Robustness of discrete-time direct adaptive controllers. IEEE Trans Autom Control AC-30(12):1179–1187 MathSciNetCrossRefGoogle Scholar
  81. Pajunen G (1992) Adaptive control of Wiener type nonlinear systems. Automatica 28:781–785 MathSciNetzbMATHCrossRefGoogle Scholar
  82. Parks PC (1966) Lyapunov redesign of model reference adaptive control systems. IEEE Trans Autom Control AC-11:362–367 CrossRefGoogle Scholar
  83. Praly L (1983c) Robustness of model reference adaptive control. In: Proc 3rd Yale workshop on adaptive systems, New Haven, Connecticut, USA Google Scholar
  84. Praly L, Bastin G, Pomet JB, Jiang ZP (1991) Adaptive stabilization of nonlinear systems. In: Kokotovic PV (ed) Foundations of adaptive control. Springer, Berlin Google Scholar
  85. Raumer T, Dion JM, Dugard L (1993) Adaptive nonlinear speed control of induction motors. Int J Adapt Control Signal Process 7(5):435–455 zbMATHCrossRefGoogle Scholar
  86. Samson C (1982) An adaptive LQ controller for non-minimum phase systems. Int J Control 3:389–397 MathSciNetzbMATHGoogle Scholar
  87. Sastry S, Bodson M (1989) Adaptive control: stability, convergence, and robustness. Prentice Hall, New York zbMATHGoogle Scholar
  88. Sastry S, Isidori A (1989) Adaptive control of linearizable systems. IEEE Trans Autom Control AC-34:1123–1131 MathSciNetCrossRefGoogle Scholar
  89. Slotine JJ, Li W (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs zbMATHGoogle Scholar
  90. Suarez D, Lozano R, Åström KJ, Wittenmark B (1996) Adaptive control linear systems with poles in the closed LHP with constrained inputs. In: Proc 35th IEEE CDC, Kobe, Japan Google Scholar
  91. Sussmann H, Sontag ED, Yang Y (1994) A general result on the stabilization of linear systems using bounded controls. IEEE Trans Autom Control AC-39:2411–2425 MathSciNetCrossRefGoogle Scholar
  92. Tao G, Kokotovic PV (1996) Adaptive control of systems with actuator and sensor nonlinearities. Wiley, New York zbMATHGoogle Scholar
  93. Tsypkin YZ (1971) Adaptation and learning in automatic systems. Academic Press, New York Google Scholar
  94. Valentinotti S (2001) Adaptive rejection of unstable disturbances: application to a fed-batch fermentation. Thèse de doctorat, École Polytechnique Fédérale de Lausanne Google Scholar
  95. Van den Hof P, Schrama R (1995) Identification and control—closed-loop issues. Automatica 31(12):1751–1770 MathSciNetzbMATHCrossRefGoogle Scholar
  96. Whitaker HP, Yamron J, Kezer A (1958) Design of a model-reference adaptive control system for aircraft. Technical report, R-164, MIT, Instrumentation Lab, Cambridge, USA Google Scholar
  97. Zeng J, de Callafon RA (2006) Recursive filter estimation for feedforward noise cancellation with acoustic coupling. J Sound Vib 291:1061–1079 CrossRefGoogle Scholar
  98. Zhang C, Evans RJ (1994) Continuous direct adaptive control with saturation input constraint. IEEE Trans Autom Control AC-39:1718–1722 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Ioan Doré Landau
    • 1
  • Rogelio Lozano
    • 2
  • Mohammed M’Saad
    • 3
  • Alireza Karimi
    • 4
  1. 1.Département d’AutomatiqueGIPSA-LAB (CNRS/INPG/UJF)St. Martin d’HeresFrance
  2. 2.UMR-CNRS 6599, Centre de Recherche de Royalieu, Heuristique et Diagnostic des Systèmes ComplexesUniversité de Technologie de CompiègneCompiègneFrance
  3. 3.Centre de Recherche (ENSICAEN), Laboratoire GREYCÉcole Nationale Supérieure d’Ingénieurs de CaenCaen CedexFrance
  4. 4.Laboratoire d’AutomatiqueÉcole Polytechnique Fédérale de LausanneLaussanneSwitzerland

Personalised recommendations