Skip to main content

Nanoarchitectured Electrodes for Enhanced Electron Transport in Dye-Sensitized Solar Cells

  • Chapter
  • First Online:
Energy Efficiency and Renewable Energy Through Nanotechnology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The invention of dye-sensitized solar cell (DSSC) provided a promising alternative to Si-based photovoltaic devices. The first generation of DSSCs was constructed on nanoparticle wide bandgap semiconductor photoanodes. However, despite its unmatched success to date, the nanoparticle-based photoanode suffers from exceedingly slow electron transport due to the intrinsic defect states in the nanoparticle network, which eventually limits any further advancement in the device efficiency. Recent efforts have been directed toward developing ordered electron transport pathways using a variety of pseudo-1D photoanodes that exhibit enhanced charge transport and greater material versatility. Further exploration and optimization of these alternative nanoarchitectured photoanodes may eventually lead to device performance exceeding the current state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basic Research Needs for Solar Energy Utilization, DoE Report of Basic Energy Sciences Workshop on Solar Energy Utilization August 18–21, 2005

    Google Scholar 

  2. O’ Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  3. Nazeeruddin MK, Kay A, Rodicio I et al (1993) Conversion of light to electricity by cis-X2bis(2, 2’-bipyridyl-4, 4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390

    Article  Google Scholar 

  4. Nazeeruddin MK, De Angelis F, Fantacci S et al (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847

    Article  Google Scholar 

  5. Chiba Y, Islam A, Watanabe Y et al. (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Jap J Appl Phys 45: L638–L640

    Google Scholar 

  6. Grätzel M (2003) Applied physics—solar cells to dye for. Nature 421:586–587

    Article  Google Scholar 

  7. Gratzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851

    Article  Google Scholar 

  8. Gratzel M (2005) Dye-sensitized solid–state heterojunction solar cells. MRS Bull 30:23–27

    Google Scholar 

  9. Fisher AC, Peter LM, Ponomarev EA et al (2000) Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 104:949–958

    Article  Google Scholar 

  10. Oekermann T, Zhang D, Yoshida T, Minoura H (2004) Electron transport and back reaction in nanocrystalline TiO2 fi lms prepared by hydrothermal crystallization. J Phys Chem B 108:2227–2235

    Article  Google Scholar 

  11. Nelson J (1999) Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys Rev B 59:15374–15380

    Article  Google Scholar 

  12. van de Lagemaat J, Frank AJ (2001) Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J Phys Chem B 105:11194–11205

    Article  Google Scholar 

  13. Kopidakis N, Schiff EA, Park NG et al (2000) Ambipolar diffusion of photocarriers in electrolyte-fi lled, nanoporous TiO2. J Phys Chem B 104:3930–3936

    Article  Google Scholar 

  14. Benkstein KD, Kopidakis N, van de Lagemaat J (2003) Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J Phys Chem B 107:7759–7767

    Article  Google Scholar 

  15. Kopidakis N, Benkstein KD, van de Lagemaat J et al (2003) Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 107:11307–11315

    Article  Google Scholar 

  16. Kavan L, Grätzel M, Gilbert SE et al (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118:6716–6723

    Article  Google Scholar 

  17. Peter L (2009) “Sticky electrons” transport and interfacial transfer of electrons in the dye-sensitized solar cell. Acc Chem Res 42:1839–1847

    Article  Google Scholar 

  18. Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42:1819–1826

    Article  Google Scholar 

  19. Asano T, Kubo T, Nishikitani Y (2005) Short-circuit current density behavior of dye-sensitized solar cells. Jpn J Appl Phys 44:6776–6780

    Article  Google Scholar 

  20. Zistler M, Wachter P, Wasserscheid P et al (2006) Comparison of electrochemical methods for triiodide diffusion coefficient measurements and observation of non-stokesian diffusion behaviour in binary mixtures of two ionic liquids. Electrochim Acta 52:161–169

    Article  Google Scholar 

  21. Haque SA, Tachibana Y, Klug DR (1998) Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias. J Phys Chem B 102:1745–1749

    Article  Google Scholar 

  22. Roy JC, Hamill WH, Williams RR (1955) Diffusion kinetics of the photochemical and thermal dissociation-recombination of trihalide ions. J Am Chem Soc 77:2953–2957

    Article  Google Scholar 

  23. Kubo W, Kambe S, Nakade S et al (2003) Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. J Phys Chem B 107:4374–4381

    Article  Google Scholar 

  24. ITO S, Zakeeruddin SM, Comte P et al (2008) Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte. Nature Photonics 2:693–698

    Article  Google Scholar 

  25. Li G, Shrotriya V, Huang JS et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868

    Article  Google Scholar 

  26. Martinson ABF, Hamann TW, Pellin MJ et al (2008) New architectures for dye-sensitized solar cells. Chem Eur J 14:4458–4467

    Article  Google Scholar 

  27. Law M, Greene LE, Johnson JC et al (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459

    Article  Google Scholar 

  28. Greene LE, Law M, Goldberger J et al (2003) Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Ed 42:3031–3034

    Article  Google Scholar 

  29. Mora-Seró I, Fabregat-Santiago F, Denier B et al (2006) Determination of carrier density of ZnO nanowires by electrochemical techniques. Appl Phys Lett 89:203117

    Article  Google Scholar 

  30. Guillén E, Casanueva F, Anta JA et al (2008) Photovoltaic performance of nanostructured zinc oxide sensitised with xanthene dyes. J Photochem Photobio A Chem 200:364–370

    Article  Google Scholar 

  31. Keis K, Lindgren J, Lindquist SE et al (2000) Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir 16:4688–4694

    Article  Google Scholar 

  32. Horiuchi H, Katoh R, Hara K (2003) Electron injection efficiency from excited N3 into nanocrystalline ZnO films: effect of (N3 − Zn2+) aggregate formation. J Phys Chem B 107:2570–2574

    Article  Google Scholar 

  33. Sayama K, Tsukagoshi S, Hara K et al (2002) Photoelectrochemical properties of j aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film. J Phys Chem B 106:1363–1371

    Article  Google Scholar 

  34. Feng X, Shankar K, Varghese OK et al (2008) Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett 8:3781–3786

    Article  Google Scholar 

  35. Paulose M, Shankar K, Varghese OK et al (2006) Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J Phys D Appl Phys 39:2498–2503

    Article  Google Scholar 

  36. Paulose M, Prakasam HE, Varghese OK et al (2007) TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion. J Phys Chem C 111:14992–14997

    Article  Google Scholar 

  37. Martinson ABF, Elam JW, Hupp JT et al (2007) ZnO nanotube based dye-sensitized solar cells. Nano Lett 7:2183–2187

    Article  Google Scholar 

  38. Martinson ABF, Elam JW, Liu J et al (2008) Radial electron collection in dye-sensitized solar cells. Nano Lett 8:2862–2866

    Article  Google Scholar 

  39. Martinson ABF, Goes MS, Fabregat-Santiago F (2009) Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics. J Phys Chem A 113:4015–4021

    Article  Google Scholar 

  40. Irwin MD, Buchholz DB, Hains AW (2008) p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc Natl Acad Sci 105:2783–2787

    Article  Google Scholar 

  41. Liang Y, Zhen C, Zou D et al (2004) Preparation of free-standing nanowire arrays on conductive substrates. J Am Chem Soc 126:16338–16339

    Article  Google Scholar 

  42. Ko S, Lee D, Jee S et al (2006) Mechanical properties and residual stress in porous anodic alumina structures. Thin Solid Films 515:1932–1937

    Article  Google Scholar 

  43. Jiang CY, Sun XW, Lo GQ et al (2007) Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl Phys Lett 90:263501

    Article  Google Scholar 

  44. Cheng HM, Chiu WH, Lee CH et al (2008) Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications. J Phys Chem C 112:16359–16364

    Article  Google Scholar 

  45. Zhu K, Neale NR, Miedaner A et al (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO0 nanotube arrays. Nano Lett 7:69–74

    Article  Google Scholar 

  46. Zhu K, Vinzant TB, Neale NR et al (2007) Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Lett 7:3739–3754

    Article  Google Scholar 

  47. Kim D, Ghicov A, Albu SP et al (2008) Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. J Am Chem Soc 130:16454–16455

    Article  Google Scholar 

  48. Yang Z, Xu T, Ito Y et al (2009) Enhanced electron transport in dye-sensitized solar cells using short ZnO nanotips on a rough metal anode. J Phys Chem C 113:20521–20526

    Article  Google Scholar 

  49. Du Pasquier A, Chen HH, Lu YC (2006) Dye sensitized solar cells using well-aligned zinc oxide nanotip arrays. Appl Phys Lett 89:253513

    Article  Google Scholar 

  50. Chen HH, Du Pasquier A, Saraf G et al (2008) Dye-sensitized solar cells using ZnO nanotips and Ga-doped ZnO films. Semicond Sci Technol 23:045004

    Article  Google Scholar 

  51. Peter LM (2007) Characterization and modeling of dye-sensitized solar cells. J Phys Chem C 111:6601–6612

    Article  Google Scholar 

  52. Anderson PA (1940) The contact difference of potential between barium and zinc the external work function of zinc. Phys Rev 57:122–127

    Article  Google Scholar 

  53. Reinaudi L, DelPopolo M, Leiva E (1997) Work function calculation for thick metal slabs with local pseudopotentials. Surf Sci 372:L309–L314

    Article  Google Scholar 

  54. Sun Z, Wang C, Yang J, Zhao B, Lombardi JR (2008) Nanoparticle metal—semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy. J Phys Chem C 112:6093–6098

    Article  Google Scholar 

  55. Katoh R, Furube A, Barzykin AV, Arakawa H, Tachiya M (2004) Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors. Coord Chem Rev 248:1195–1213

    Article  Google Scholar 

  56. Kamiya T, Tajima K, Nomura K, Yanagi H, Hosono H (2008) Interface electronic structures of zinc oxide and metals: first-principle study. Physica Status Solidi (a) 205:1929–1933

    Article  Google Scholar 

  57. Benda V, Gowar J, Grant DA (1999) Power semiconductor devices: theory and applications. Wiley, New York, pp 62–65

    Google Scholar 

  58. Kieven D, Dittrich T, Belaidi A, Tornow J, Schwarzburg K, Allsop N, Lux-Steiner M (2008) Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber. Appl Phys Lett 92:153107

    Article  Google Scholar 

  59. Hahn R, Schmidt-Stein F, Salonen J, Thiemann S, Song Y, Kunze J, Lehto V, Schmuki P (2009) Semimetallic TiO2 nanotubes. Angew Chem Int Ed 48:7236–7239

    Article  Google Scholar 

  60. Hamann TW, Jensen RA, Martinson ABF, Ryswyk HV, Hupp JT (2008) Advancing beyond current generation dye-sensitized solar cells energy. Environ Sci 1:66–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Xu, T. (2011). Nanoarchitectured Electrodes for Enhanced Electron Transport in Dye-Sensitized Solar Cells. In: Zang, L. (eds) Energy Efficiency and Renewable Energy Through Nanotechnology. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-638-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-638-2_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-637-5

  • Online ISBN: 978-0-85729-638-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics