Advertisement

Aerogels for Energy Saving and Storage

  • Te-Yu Wei
  • Shih-Yuan Lu
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Aerogels have drawn a great deal of research attention in recent years because their unique and advantageous structural characteristics of high porosity, high specific surface area, and mesopores, find a wide range of potential applications. Among them, their timely and imperative applications in energy saving and energy storage are particularly important to respond to the ever worsening issues of fossil energy depletion and global warming. In this chapter, aerogels serving as thermal insulation materials for energy saving and as electrode materials for supercapacitors and lithium ion batteries for energy storage are reviewed and discussed.

Keywords

Specific Capacitance High Specific Surface Area Silica Aerogel High Specific Capacitance Carbon Aerogel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 227:741–741CrossRefGoogle Scholar
  2. 2.
    Chervin CN, Clapsaddle BJ, Chiu HW et al (2005) Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol–gel route. Chem Mater 17:3345–3351CrossRefGoogle Scholar
  3. 3.
    Gash AE, Tillotson TM, Satcher JH Jr et al (2001) Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem Mater 13:999–1007CrossRefGoogle Scholar
  4. 4.
    Baumann TF, Gash AE, Chinn SC et al (2005) Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem Mater 17:395–401CrossRefGoogle Scholar
  5. 5.
    Baumann TF, Kucheyev SO, Gash AE et al (2005) Facile synthesis of a crystalline, high-surface-area SnO2 aerogel. Adv Mater 17:1546–1548CrossRefGoogle Scholar
  6. 6.
    Gao YP, Sisk CN, Hope-Weeks LJ (2007) A sol-gel route to synthesize monolithic zinc oxide aerogels. Chem Mater 19:6007–6011CrossRefGoogle Scholar
  7. 7.
    Laberty-Robert C, Long JW, Lucas EM et al (2006) Sol-gel-derived ceria nanoarchitectures: synthesis, characterization, and electrical properties. Chem Mater 18:50–58CrossRefGoogle Scholar
  8. 8.
    Long JW, Logan MS, Rhodes CP et al (2004) Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures. J Am Chem Soc 126:16879–16889CrossRefGoogle Scholar
  9. 9.
    Wei TY, Chen CH, Chang KH et al (2009) Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem Mater 21:3228–3233CrossRefGoogle Scholar
  10. 10.
    Prakash SS, Brinker CJ, Hurd AJ (1995) Silica aerogel films at ambient pressure. J Non-Crystal Solids 190:264–275CrossRefGoogle Scholar
  11. 11.
    Prakash SS, Brinker CJ, Hurd AJ et al (1995) Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shinkage. Nature 374:439–443CrossRefGoogle Scholar
  12. 12.
    Roig A, Molins E, Rodriguez E et al (2004) Superhydrophobichydrophobic silica aerogels by fluorination at the gel stage. Chem Comm 2316–2317Google Scholar
  13. 13.
    Wei TY, Chang TF, Lu SY et al (2007) Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying. J Am Ceram Soc 90:2003–2007CrossRefGoogle Scholar
  14. 14.
    Lu X, Arduini-Schuster MC, Kuhn J et al (1992) Thermal conductivity of monolithic organic aerogels. Science 255:971–972CrossRefGoogle Scholar
  15. 15.
    Yoldas BE, Annen MJ, Bostaph J (2000) Chemical engineering of aerogel morphology formed under nonsupercriticalsupercritical conditions for thermal insulation. Chem Mater 12:2475–2484CrossRefGoogle Scholar
  16. 16.
    Wagh PB, Begag R, Pajonk GM et al (1999) Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors. Mater Chem Phys 57:214–218CrossRefGoogle Scholar
  17. 17.
    Gurav JL, Rao AV, Nadargl DY (2009) Study of thermal conductivity and effect of humidity on HMDZ modified TEOS based aerogel dried at ambient pressure. J Sol-Gel Sci Technol 50:275–280CrossRefGoogle Scholar
  18. 18.
    Nadargi DY, Roa AV (2009) Methyltriethixysilane: new precursor for synthesizing silica aerogels. J Alloy Compd 467:397–404CrossRefGoogle Scholar
  19. 19.
    Albert DF, Andrews GR, Mendenhall RS et al (2001) Supercritical methanol drying as a convenient route to phenolic-furfural aerogels. J Non-Cryst Solids 296:1–9CrossRefGoogle Scholar
  20. 20.
    Rigacci A, Marechal JC, Repoux M et al (2004) Preparation of polyurethane-based aerogels and xerogels for thermal superinsulation. J Non-Cryst Solids 350:372–378CrossRefGoogle Scholar
  21. 21.
    Lee JK, Gould GL, Rhine W (2009) Polyurea based aerogel for a high performance thermal insulation material. J Sol-Gel Sci Technol 49:209–220CrossRefGoogle Scholar
  22. 22.
    Lee JK, Gould GL (2007) Polydicyclopentadiene based aerogelaerogel: a new insulation material. J Sol-Gel Sci Technol 44:20–40CrossRefGoogle Scholar
  23. 23.
    Katti A, Shimpi N, Roy S et al (2006) Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels. Chem Mater 18:285–296CrossRefGoogle Scholar
  24. 24.
    Meador MAB, Capadona LA, McCorkle L et al (2007) Structure-property relationships in porous 3D nanostructures as a function of preparation condition isocyanate cross-linked silica aerogels. Chem Mater 19:2247–2260CrossRefGoogle Scholar
  25. 25.
    Wei TY, Lu SY, Chang YC (2008) Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature conductivities. J Phys Chem B 112:11881–11886CrossRefGoogle Scholar
  26. 26.
    Hrubesh LW, Pekala RW (1994) Thermal properties of organic and inorganic aerogels. J Mater Res 9:731–738CrossRefGoogle Scholar
  27. 27.
    Wang J, Kuhn J, Lu X (1995) Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non-Cryst Solids 186:296–300CrossRefGoogle Scholar
  28. 28.
    Kuhn J, Gleissner T, Arduini-Schuster MC et al (1995) Integration of mineral powders into SiO2 aerogels. J Non-Cryst Solids 186:291–295CrossRefGoogle Scholar
  29. 29.
    Wei TY, Lu SY, Chang YC (2009) A new class of opacified monolithic aerogels of ultralow high-temperature thermal conductivies. J Phys Chem C 113:7424–7428CrossRefGoogle Scholar
  30. 30.
    Wiener M, Relchenauer G, Hemberger F et al (2006) Thermal conductivity of carbon aerogels as a function of pyrolysis temperature. Int J Thermophys 27:1826–1843CrossRefGoogle Scholar
  31. 31.
    Wiener M, Reichenauer G, Braxmeier S et al (2009) Carbon aerogel-based high-temperature thermal insulation. Int J Thermophys 30:1372–1385CrossRefGoogle Scholar
  32. 32.
    Miller JR, Burke AF (2008) Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem Soc Inter 17:53–57Google Scholar
  33. 33.
    Jayalakshmi M, Balasubramanian K (2008) Simple capacitors to supercapacitors-an overview. Int J Electrochem Sci 3:1196–1217Google Scholar
  34. 34.
    Endo M, Maeda T, Takeda T et al (2001) Capacitance and pore-size distribution in aqueous and nanaqueous electrolytes using various actived carbon electrodes. J Electrochem Soc 148:A910–A914CrossRefGoogle Scholar
  35. 35.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nature Mater 7:845–854CrossRefGoogle Scholar
  36. 36.
    Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785CrossRefGoogle Scholar
  37. 37.
    Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652CrossRefGoogle Scholar
  38. 38.
    Zheng JP, Huang J, Jow TR (1997) The limitations of energy density fro electrochemical capacitors. J Electorchem Soc 114:2026–2031CrossRefGoogle Scholar
  39. 39.
    Hu CC, Chen WC, Chang KH (2004) How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J Electrochem Soc 151:A281–A290CrossRefGoogle Scholar
  40. 40.
    Lin C, Ritter JA (1997) Effect of synthesis pH on the structure of carbon xerogels. Carbon 35:1271–1278CrossRefGoogle Scholar
  41. 41.
    Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv Mater 15:101–114CrossRefGoogle Scholar
  42. 42.
    Li J, Wang X, Huang Q et al (2006) Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J Power Sour 158:784–788CrossRefGoogle Scholar
  43. 43.
    Wang J, Yang X, Wu D et al (2008) The porous structures of activated carbon aerogels and their effects on electrochemical performance. J Power Sour 185:589–594CrossRefGoogle Scholar
  44. 44.
    Fang B, Wei YZ, Maruyama K et al (2005) High capacity supercapacitors based on modified activated carbon aerogel. J Appl Electrochem 35:229–233CrossRefGoogle Scholar
  45. 45.
    Zeng X, Wu D, Fu R et al (2008) Structure and EDLC characteristics of pitch-based carbon aerogels. Mater Chem Phys 112:1074–1077CrossRefGoogle Scholar
  46. 46.
    Zeng X, Wu D, Fu R et al (2008) Preparation and electrochemical properties of pitch-based actived carbon aerogels. Electrochim Acta 53:5711–5715CrossRefGoogle Scholar
  47. 47.
    Bordjiba T, Mohamedi M, Dai LH (2009) New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv Mater 20:815–819CrossRefGoogle Scholar
  48. 48.
    Miller JM, Dunn B, Tran TD et al (1997) Deposition of ruthrnium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J Electrochem Soc 144:L309–L311CrossRefGoogle Scholar
  49. 49.
    Miller JM, Dunn B (1999) Morphology and electrochemistry of ruthenium/carbon aerogel nanostructures. Langmuir 15:799–806CrossRefGoogle Scholar
  50. 50.
    Long JW, Swider KE, Merzbacher CI et al (1999) Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: the nature of capacitance in nanostructured materials. Langmuir 15:780–785CrossRefGoogle Scholar
  51. 51.
    Wu M, Gao J, Zhang S et al (2006) Synthesis and charcterization of aerogel-like mesoporous nickel oxide for electrochemical supercapacitors. J Porous Mater 13:407–412CrossRefGoogle Scholar
  52. 52.
    Wei TY, Chen CH, Chien HC et al (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an expoxide-drived sol-gel process. Adv Mater 22:347–351CrossRefGoogle Scholar
  53. 53.
    Arora P, White RE, Doyle M (1998) Capacity fade mechanisms and side reactions in lithium-ion batteries. J Electrochem Soc 145:3647–3667CrossRefGoogle Scholar
  54. 54.
    Wakihara M (2001) Recent developments in lithium ion batteries. Mater Sci Eng R33:109–134Google Scholar
  55. 55.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  56. 56.
    Shukla AK, Kumar TP (2008) Materials for next-generation lithium batteries. Current Sci 94:314–331Google Scholar
  57. 57.
    Salloux K, Chaput F, Wong HP et al (1995) Lithium intercalation in vanadium pentoxide aerogels. J Electrochem Soc 142:L191–L192CrossRefGoogle Scholar
  58. 58.
    Le DB, Passerini S, Guo J et al (1996) High surface area V2O5 aerogel intercalation electrodes. J Electrochem Soc 143:2099–2104CrossRefGoogle Scholar
  59. 59.
    Passerini S, Le DB, Smyrl WH et al (1997) XAS and electrochemical characterization of lithiated high surface area V2O5 aerogels. Solid State Ion 104:195–204CrossRefGoogle Scholar
  60. 60.
    Dong W, Dunn B (1998) Sol-gel synthesis and characterization of molybdenum oixde gels. J Non-Cryst Solids 225:135–140CrossRefGoogle Scholar
  61. 61.
    Passerini S, Coustier F, Giorgetti M et al (1999) Li-Mn-O aerogels. Electrochem Solid State Lett 2:483–485CrossRefGoogle Scholar
  62. 62.
    Long JW, Swider-Lyons KE, Stroud RM et al (2000) Design of pore and matter architectures in manganese oxide charge-storage materials. Electrochem Solid State Lett 3:453–456CrossRefGoogle Scholar
  63. 63.
    Long JW, Stroud RM, Rolison DR (2001) Controlling the pore-solid architecture of mesoporous, high surface area manganese oxides with the birnessite structure. J Non-Cryst Solids 285:288–294CrossRefGoogle Scholar
  64. 64.
    Zhang F, Passerini S, Owens BB et al (2001) Nanocomposites of V2O5 aerogel and RuO2 as cathode materials for lithium intercalation. Electrochem Solid State Lett 4:A221–A223CrossRefGoogle Scholar
  65. 65.
    Sakamoto JS, Dunn B (2002) Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries. J Electrochem Soc 149:A26–A30CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Tsing-Hua UniversityHsinchuTaiwan (R.O.C)

Personalised recommendations