Skip to main content

Nanostructured Materials for Photolytic Hydrogen Production

  • Chapter
  • First Online:
Energy Efficiency and Renewable Energy Through Nanotechnology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

A hydrogen economy is often considered an attractive alternative to our current fossil fuel-based energy system. In order for such a hydrogen economy to become reality, several challenges associated with the production, storage, transportation and use of hydrogen must be solved. This chapter addresses the issue of hydrogen production. While the currently most widely used method to produce hydrogen is based on the conversion of fossil fuel resources and does not therefore fulfill the requirement of CO2 neutrality, we discuss here the photolytic production of hydrogen via water splitting. This scheme is based on energy input from the most powerful and ultimately sustainable energy source mankind has at its disposal: the sun. Moreover, no carbon dioxide is released into the atmosphere, and the method has potential for cost-effective large-scale production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that wind power and hydropower are considered variations of solar energy here, and that solar energy, and to a large extent also geothermal energy, actually are based on nuclear processes.

References

  1. Smalley RE (2005) Future global energy prosperity: the Terawatt challenge. MRS Bull 30:412–417

    Article  Google Scholar 

  2. Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge, a review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81

    Article  Google Scholar 

  3. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  Google Scholar 

  4. Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861

    Article  Google Scholar 

  5. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  Google Scholar 

  6. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  7. Carp O, Huisman CL, Reller A (2007) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Article  Google Scholar 

  8. Salazar K, Kimball SM (2009) Mineral commodities summaries 2009, US Geological Survey. http://minerals.usgs.gov. Accessed 31 Aug 2010

  9. Zhu J, Zhang J, Chen F et al (2005) High photocatalytic activity TiO2 prepared by a modified sol-gel method: characterization and their photocatalytic activity for degradation of XRG and X-GL. Top Catal 35:261–268

    Article  Google Scholar 

  10. Zhu J, Zhang J, Chen F et al (2005) Preparation of high photocatalytic activity TiO2 with a bicrystalline phase containing anatase and TiO2 (B). Mater Lett 59:3378–3381

    Article  Google Scholar 

  11. Zhang HZ, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2 . J Phys Chem B 104:3481–3487

    Article  Google Scholar 

  12. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  Google Scholar 

  13. Hernández-Alonso MD, Fresno F, Suárez S et al (2009) Development of alternative photocatalysts to TiO2 : challenges and opportunities. Energy Environ Sci 2:1231–1257

    Article  Google Scholar 

  14. Boschloo G, Edvinsson T, Hagfeldt A (2006) Dye-sensitized nanostructured ZnO electrodes for solar cell application. In: Tetsuo S (ed) Nanostructured materials for solar energy conversion. Elsevier, Amsterdam

    Google Scholar 

  15. Özgür Ü, Alivov YI, Liu C et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301

    Article  Google Scholar 

  16. Zhang H, Chen G, Bahnemann DW (2009) Photoelectrocatalytic materials for environmental applications. J Mater Chem 19:5089–5121

    Article  Google Scholar 

  17. Anpo M, Chapter 10, pp 175–185; Inoue Y, Chapter 15, pp 249–261 (2002) In: Kaneko M, Okura I (eds) Photocatalysis: science and technology, Springer, New York

    Google Scholar 

  18. Domen K, Chapter 16, pp 261–278 (2002) In: Kaneko M, Okura I (eds) Photocatalysis: science and technology, Springer, New York

    Google Scholar 

  19. Rajeshwar K (2008) Hydrogen generation from irradiated semiconductor-liquid interfaces. In: Rajeshwar K, McConnell R, Licht S (eds) Solar hydrogen generation. Springer, New York

    Chapter  Google Scholar 

  20. Kim HG, Hwang DW, Kim J et al (1999) Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem Commun 1999:1077–1078

    Article  Google Scholar 

  21. Ishikawa A, Takata T, Kondo JN et al (2002) Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J Am Chem Soc 124:13547–13553

    Article  Google Scholar 

  22. Kato H, Kudo A (2001) Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J Phys Chem B 105:4285–4292

    Article  Google Scholar 

  23. Shangguan WF (2007) Hydrogen evolution from water splitting on nanocomposite photocatalysts. Sci Tech Adv Mater 8:76–81

    Article  Google Scholar 

  24. Tian MK, Shangguan WF, Yuan J et al (2007) Promotion effect of nanosized Pt, RuO2 and NiOx loading on visible light-driven photocatalysts K4Ce2M10O30 (M = Ta, Nb) for hydrogen evolution from water decomposition. Sci Tech Adv Mater 8:82–88

    Article  Google Scholar 

  25. Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20:35–54

    Article  Google Scholar 

  26. Asahi R, Morikawa T, Ohwaki T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  Google Scholar 

  27. Hitoki G, Ishikawa A, Takata T et al (2002) Ta3N5 as a novel visible light-driven photocatalyst (λ < 600 nm). Chem Lett 33:736–737

    Article  Google Scholar 

  28. Sato J, Saito N, Yamada Y et al (2005) RuO2-loaded β-Ge3N4 as a non-oxide photocatalyst for overall water splitting. J Am Chem Soc 127:4150–4151

    Article  Google Scholar 

  29. Kida T, Minami Y, Guan G et al (2006) Photocatalytic activity of gallium nitride for producing hydrogen from water under light irradiation. J Mater Sci 41:3527–3534

    Article  Google Scholar 

  30. Hara M, Takata T, Kondo JN et al (2004) Photocatalytic reduction of water by TaON under visible light irradiation. Catal Today 90:313–317

    Article  Google Scholar 

  31. Yamasita D, Takata T, Hara M et al (2004) Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ionics 172:591–595

    Article  Google Scholar 

  32. Kasahara A, Nukumizu K, Takata T et al (2003) LaTiO2N as a visible-light (≤600 nm)-driven photocatalyst (2). J Phys Chem B 107:791–797

    Article  Google Scholar 

  33. Liu M, You W, Lei Z et al. (2004) Water reduction and oxidation on Pt–Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chem Commun 2004: 2192–2193

    Google Scholar 

  34. Maeda K, Teramura K, Lu DL et al (2006) Photocatalyst releasing hydrogen from water-enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440:295

    Article  Google Scholar 

  35. Lee Y, Terashima H, Shimodaira Y et al (2007) Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J Phys Chem C 111:1042–1048

    Article  Google Scholar 

  36. Ishikawa A, Takata T, Matsumura T et al (2004) Oxysulfides Ln2Ti2S2O5 as stable photocatalysts for water oxidation and reduction under visible-light irradiation. J Phys Chem B 108:2637–2642

    Article  Google Scholar 

  37. Finklea HO (1988) Semiconductor electrodes. Elsevier, Amsterdam

    Google Scholar 

  38. Heller A (1984) Hydrogen-evolving solar cells. Science 223:1141–1148

    Article  Google Scholar 

  39. Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:425–427

    Article  Google Scholar 

  40. Taniguchi Y, Yoneyama H, Tamura H (1983) Hydrogen evolution on surface-modified silicon powder photocatalysts in aqueous ethanol solutions. Chem Lett 12:269–272

    Article  Google Scholar 

  41. Yoneyama H, Matsumoto N, Tamura H (1986) Photocatalytic decomposition of formic acid on platinized n-type silicon powder in aqueous solution. Bull Chem Soc Jpn 59:3302–3304

    Article  Google Scholar 

  42. Sakai Y, Sugahara S, Matsumura M et al (1988) Photoelectrochemical water splitting by tandem type and heterojunction amorphous silicon electrodes. Can J Chem 66:1853–1856

    Article  Google Scholar 

  43. Frame FA, Carroll EC, Larsen DS et al (2008) First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible light. Chem Commun 19:2206–2208

    Article  Google Scholar 

  44. Schürch D, Currao A, Sarkar S et al (2002) The silver chloride photoanode in photoelectrochemical water splitting. J Phys Chem B 106:12764–12775

    Article  Google Scholar 

  45. Currao A, Reddy VR, van Veen MK et al (2004) Water splitting with silver chloride photoanodes and amorphous silicon solar cells. Photochem Photobiol Sci 3:1017–1025

    Article  Google Scholar 

  46. Gao Y, Wang Y, Wang Y (2007) Photocatalytic hydrogen evolution from water on SiC under visible light irradiation. React Kinet Catal Lett 91:13–19

    Article  Google Scholar 

  47. Levy B (1997) Photochemistry of nanostructured materials for energy applications. J Electroceramics 1:239–272

    Article  Google Scholar 

  48. Stroyuk AL, Kryukov AI, Kuchmii SY et al (2009) Semiconductor photocatalytic systems for the production of hydrogen by the action of visible light. Theor Exp Chem 45:209–233

    Article  Google Scholar 

  49. Li D, Haneda H, Hishita S et al (2005) Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J Fluor Chem 126:69–77

    Article  Google Scholar 

  50. Lin ZS, Orlov A, Lambert RM et al (2005) New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2 . J Phys Chem B 109:20948–20952

    Article  Google Scholar 

  51. Nakamura R, Tanaka T, Nakato Y (2004) Mechanism for visible light responses in anodic photocurrents at n-doped TiO2 film electrodes. J Phys Chem B 108:10617–10620

    Article  Google Scholar 

  52. Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111:2834–2860

    Article  Google Scholar 

  53. Baba R, Nakabayashi S, Fujishima A et al (1985) Investigation of the mechanism of hydrogen evolution during photocatalytic water decomposition on metal-loaded semiconductor powders. J Phys Chem 89:1902–1905

    Article  Google Scholar 

  54. Nosaka Y, Norimatsu K, Miyama H (1984) The function of metals in metal-compounded semiconductor photocatalysts. Chem Phys Lett 106:128–131

    Article  Google Scholar 

  55. Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2 /Au nanocomposites effect of metal particle size on the Fermi level equilibration. J Am Chem Soc 126:4943–4950

    Article  Google Scholar 

  56. Sayama K, Mukasa K, Abe R et al (2002) A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. J Photochem Photobio A: Chem 148:71–77

    Article  Google Scholar 

  57. Tada H, Mitsui T, Kiyonaga T et al (2006) All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nature Mater 5:782–786

    Article  Google Scholar 

  58. Campbell P, Green MA (1987) Light trapping properties of pyramidally textured surfaces. J Appl Phys 62:243–249

    Article  Google Scholar 

  59. Heine C, Morf RH (1995) Submicrometer gratings for solar energy applications. Appl Optics 34:2476–2482

    Article  Google Scholar 

  60. Ito S, Murakami TN, Comte P et al (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516:4613–4619

    Article  Google Scholar 

  61. Vahala KJ (2003) Optical microcavities. Nature 424:839–846

    Article  Google Scholar 

  62. Halaoui LI, Abrams NM, Mallouk TE (2005) Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals. J Phys Chem B 109:6334–6342

    Article  Google Scholar 

  63. Bermel P, Luo C, Zeng L et al (2007) Improving thin-film crystalline silicon solar cell efficencies with photonic crystals. Opt Express 15:16986–17000

    Article  Google Scholar 

  64. Wiersma DS, Sapienza R, Mujumdar S et al (2005) Optics of nanostructured dielectrics. J Opt A: Pure Appl Opt 7:S190–S197

    Article  Google Scholar 

  65. Mayer B, Madronich S (2004) Actinic flux and photolysis in water droplets: Mie calculations and geometrical optics limit. Atmos Chem Phys 4:2241–2250

    Article  Google Scholar 

  66. Robinson JT, Manolatou C, Chen L et al (2005) Ultrasmall mode volumes in dielectric optical microcavities. Phys Rev Lett 95:143901

    Article  Google Scholar 

  67. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  68. Coyle S, Netti MC, Baumberg JJ et al (2001) Confined plasmons in metallic nanocavities. Phys Rev Lett 87:176801

    Article  Google Scholar 

  69. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  Google Scholar 

  70. Tsai F-J, Wang J-Y, Huang J-J et al (2010) Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles. Opt Express 18:A207–A220

    Article  Google Scholar 

  71. Hägglund C, Zäch M, Petersson G et al (2008) Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett 92:053110

    Article  Google Scholar 

  72. Ferry VE, Sweatlock LA, Pacifici D et al (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8:4391–4397

    Article  Google Scholar 

  73. Bai W, Gan Q, Bartoli F et al (2009) Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells. Optics Lett 34:3725–3727

    Article  Google Scholar 

  74. Kirkengen M, Bergli J, Galperin YM (2007) Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles. J Appl Phys 102:093713

    Article  Google Scholar 

  75. Hägglund C, Zäch M, Kasemo B (2008) Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl Phys Lett 92:013113

    Article  Google Scholar 

  76. Kelzenberg MD, Boettcher SW, Petykiewicz JA et al (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239–244

    Article  Google Scholar 

  77. Zhu J, Hsu C-M, Yu Z et al (2010) Nanodome solar cells with efficient light management and self-cleaning. Nano Lett 10:1979–1984

    Article  Google Scholar 

  78. Brus L (2008) Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc Chem Res 41:1742–1749

    Article  Google Scholar 

  79. Watanabe K, Menzel D, Nilius N et al (2006) Photochemistry on metal nanoparticles. Chem Rev 106:4301–4320

    Article  Google Scholar 

  80. Awazu K, Fujimaki M, Rockstuhl C et al (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130:1676–1680

    Article  Google Scholar 

  81. Christopher P, Ingram DB, Linic S (2010) Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: photochemistry mediated by Ag surface plasmons. J Phys Chem C 114:9173–9177

    Article  Google Scholar 

  82. Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127:7632–7637

    Article  Google Scholar 

  83. Ertl G, Knözinger H, Weitkamp J (1997) Handbook of heterogeneous catalysis. Wiley, Weinheim

    Book  Google Scholar 

  84. Haruta M, Kobayashi T, Sano H et al (1987) Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0°C. Chem Lett 2:405–406

    Article  Google Scholar 

  85. Maira AJ, Yeung KL, Lee CY et al (2000) Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J Catal 192:185–196

    Article  Google Scholar 

  86. Suzuki Y, Ngamsinlapasathian S, Yoshida R et al (2006) Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells. Cent Eur J Chem 4:476–488

    Article  Google Scholar 

  87. Beermann N, Vayssieres L, Lindquist S-E et al (2000) Photoeletrochemical studies of oriented nanorod thin films of hematite. J Electrochem Soc 147:2456–2461

    Article  Google Scholar 

  88. van de Krol R, Liang Y, Schoonman J (2008) Solar hydrogen production with nanostructured metal oxides. J Mater Chem 2008(18):2311–2320

    Article  Google Scholar 

  89. Kay A, Cesar I, Grätzel M (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem Soc 128:15714–15721

    Article  Google Scholar 

  90. Lindgren T, Wang H, Beermann N et al (2002) Aqueous photoelectrochemistry of hematite nanorod array. Sol Energy Mater Sol Cells 71:231–243

    Article  Google Scholar 

  91. Wang Y, Zhang Z, Zhu Y et al (2008) Nanostructured VO2 photocatalysts for hydrogen production. ACS Nano 2:1492–1496

    Article  Google Scholar 

  92. Feng X, LaTempa TJ, Basham JI et al (2010) Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett 10:948–952

    Article  Google Scholar 

  93. Shankar K, Basham JI, Allam NK et al (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113:6327–6359

    Article  Google Scholar 

  94. Khan SUM, Sultana T (2003) Photoresponse of n-TiO2 thin film and nanowire electrodes. Sol Energy Mater Sol Cells 76:211–221

    Article  Google Scholar 

  95. Wolcott A, Smith WA, Kuykendall TR et al (2009) Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small 5:104–111

    Article  Google Scholar 

  96. Mor GK, Shankar K, Paulose M et al (2005) Enhanced photocleavage of water using titania nanotube arrays. Nano Lett 5:191–195

    Article  Google Scholar 

  97. Lin CH, Lee CH, Chao JH et al (2004) Photocatalytic generation of H2 gas from neat ethanol over Pt/TiO2 nanotube catalysts. Catal Lett 98:61–66

    Article  Google Scholar 

  98. Nam W, Han GY (2007) Preparation and characterization of anodized Pt-TiO2 nanotube arrays for water splitting. J Chem Eng Jpn 40:266–269

    Article  Google Scholar 

  99. Khan MA, Akhtar MS, Woo SI et al (2008) Enhanced photoresponse under visible light in Pt ionized TiO2 nanotube for the photocatalytic splitting of water. Catal Commun 10:1–5

    Article  Google Scholar 

  100. Thimsen E, Rastgar N, Biswas P (2008) Nanostructured TiO2 films with controlled morphology synthesized in a single step process: performance of dye-sensitized solar cells and photo water splitting. J Phys Chem C 112:4134–4140

    Article  Google Scholar 

  101. Jitputti J, Suzuki Y, Yoshikawa S (2008) Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution. Catal Commun 9:1265–1271

    Article  Google Scholar 

  102. Kuo HL, Kuo CY, Liu CH et al (2007) A highly active bi-crystalline photocatalyst consisting of TiO2 (B) nanotube and anatase particle for producing H2 gas from neat ethanol. Catal Lett 113:7–12

    Article  Google Scholar 

  103. Lin CH, Chao JH, Liu CH et al (2008) Effect of calcination temperature on the structure of a Pt/TiO2 (B) nanofiber and its photocatalytic activity in generating H2. Langmuir 24:9907–9915

    Article  Google Scholar 

  104. Janet CM, Viswanath RP (2006) Large scale synthesis of CdS nanorods and its utilization in photo-catalytic H2 production. Nanotechnology 17:5271–5277

    Article  Google Scholar 

  105. Jang JS, Joshi UA, Lee JS (2007) Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys Chem C 111:13280–13287

    Article  Google Scholar 

  106. Wang G, Yang X, Qian F et al (2010) Double-sided CdS and CdSe quantum dots co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett 10:1088–1092

    Article  Google Scholar 

  107. Costi R, Saunders AE, Elmalem E et al (2008) Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. Nano Lett 8:637–641

    Article  Google Scholar 

  108. Amirav L, Alivisatos AP (2010) Photocatalytic hydrogen production with tunable nanorod heterostructures. J Phys Chem Lett 1:1051–1054

    Article  Google Scholar 

  109. Qu Y, Liao L, Cheng R et al (2010) Rational design and synthesis of freestanding photoelectric nanodevices as highly efficient photocatalysts. Nano Lett 10:1941–1949

    Article  Google Scholar 

  110. Yu JG, Qi LF, Jaroniec M (2010) Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C 114:13118–13125

    Article  Google Scholar 

  111. Liu G, Yang HG, Wang XW et al (2009) Visible light responsive nitrogen doped anatase TiO2 sheets with dominant 001 facets derived from TiN. J Am Chem Soc 131:12868–12869

    Article  Google Scholar 

  112. Liu G, Yang HG, Wang XW et al (2009) Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant 001 facets. J Phys Chem C 113:21784–21788

    Article  Google Scholar 

  113. Youngblood WJ, Lee SHA, Maeda K et al (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc Chem Res 42:1966–1973

    Article  Google Scholar 

  114. Yi H, Peng T, Ke D et al (2008) Photocatalytic H2 production from methanol aqueous solution over titania nanoparticles with mesostructures. Int J Hydrogen Energy 33:672–678

    Article  Google Scholar 

  115. Lakshminarasimhan N, Bae E, Choi W (2007) Enhanced photocatalytic production of H2 on mesoporous TiO2 prepared by template-free method: role of interparticle charge transfer. J Phys Chem C 111:15244–15250

    Article  Google Scholar 

  116. Korzhak A, Ermokhina N, Stroyuk A et al (2008) Photocatalytic hydrogen evolution over mesoporous TiO2 /metal nanocomposites. J Photochem Photobio A: Chem 198:126–134

    Article  Google Scholar 

  117. Yamashita H, Mori K (2007) Applications of single-site photocatalysts implanted within the silica matrixes of zeolite and mesoporous silica. Chem Lett 36:348–353

    Article  Google Scholar 

  118. Zhang YJ, Zhang L (2008) Synthesis of composite material CdS/Al-HMS and hydrogen production by photocatalytic pollutant degradation under visible light irradiation. J Inorg Mater 23:66–70

    Article  Google Scholar 

  119. Ryu SY, Balcerski W, Lee TK et al (2007) Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas. J Phys Chem C 111:18195–18203

    Article  Google Scholar 

  120. Lunawat PS, Senapati S, Kumar R et al (2007) Visible light-induced splitting of water using CdS nanocrystallites immobilized over water-repellant polymeric surface Int. J Hydrogen Energy 32:2784–2790

    Article  Google Scholar 

  121. Guan GQ, Kida T, Kusakabe K et al (2004) Photocatalytic H2 evolution under visible light irradiation on CdS/ETS-4 composite. Chem Phys Lett 385:319–322

    Article  Google Scholar 

  122. Maeda K, Teramura K, Lu D et al (2006) Noble-metal/Cr2O3 core/shell nanoparticles as a co-catalyst for photocatalytic overall water splitting. Angew Chem Int Ed 45:7806–7809

    Article  Google Scholar 

  123. Yoshida M, Takanabe K, Maeda K et al (2009) Role and function of noble-metal/Cr-layer core/shell structure co-catalysts for photocatalytic overall water splitting studied by model electrodes. J Phys Chem C 113:10151–10157

    Article  Google Scholar 

  124. Maeda K, Xiong A, Yoshinaga T et al (2010) Photocatalytic overall water splitting promoted by two co-catalysts for hydrogen and oxygen evolution under visible light. Angew Chem Int Ed. 49:4096–4099

    Google Scholar 

  125. Ikeda S, Hirao K, Ishino S et al (2006) Preparation of platinized strontium titanate covered with hollow silica and its activity for overall water splitting in a novel phase-boundary photocatalytic system. Catal Today 117:343–349

    Article  Google Scholar 

  126. Kale BB, Baeg J-O, Apte SK et al (2007) Confinement of nano CdS in designated glass: a novel functionality of quantum dot-glass nanosystems in solar hydrogen production. J Mater Chem 17:4297–4303

    Article  Google Scholar 

  127. Dähne L, Leporatti S, Donath E et al (2001) Fabrication of micro reaction cages with tailored properties. J Am Chem Soc 123:5431–5436

    Article  Google Scholar 

  128. Nardin C, Thoeni S, Widmer J et al (2000) Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles. Chem Commun 2000:1433–1434

    Article  Google Scholar 

  129. Ruysschaert T, Germain M, da Silva Gomes JFP et al (2004) Liposome-based nanocapsules. IEEE Trans Nanobiosci 3:49–55

    Article  Google Scholar 

  130. Karlsson M, Davidson M, Karlsson R et al (2004) Biomimetic nanoscale reactors and networks. Ann Rev Phys Chem 55:613–649

    Article  Google Scholar 

  131. Doshi DA, Huesing N, Lu M et al (2000) Optically defined multifunctional patterning of photosensitive thin-film silica mesophases. Science 290:107–111

    Article  Google Scholar 

  132. Shtykov SN (2002) Chemical analysis in nanoreactors: main concepts and applications. J Anal Chem 57:859–868

    Article  Google Scholar 

  133. Herrmann J-M (2005) Heterogeneous photocatalysis: state of the art and present applications. Top Catal 34:49–65

    Article  Google Scholar 

  134. Santiso EE, George AM, Turner CH et al (2005) Adsorption and catalysis: the effect of confinement on chemical reactions. Appl Surf Sci 252:766–777

    Article  Google Scholar 

  135. Shchukin DG, Sviridov DV (2006) Photocatalytic processes in spatially confined micro- and nanoreactors. J Photochem Photobiol C 7:23–39

    Article  Google Scholar 

  136. Koblenz TS, Wassenaar J, Reek JNH (2008) Reactivity within a confined self-assembled nanospace. Chem Soc Rev 37:247–262

    Article  Google Scholar 

  137. Li J, Zeng HC (2005) Size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors. Angew Chem Int Ed 44:4342–4345

    Article  Google Scholar 

  138. Yen CW, Mahmoud MA, El-Sayed MA (2009) Photocatalysis in gold nanocage nanoreactors. J Phys Chem A 113:4340–4345

    Article  Google Scholar 

  139. Harris C, Kamat PV (2009) Photocatalysis with CdSe nanoparticles in confined media: mapping charge transfer events in the subpicosecond to second timescales. ACS Nano 3:682–690

    Article  Google Scholar 

  140. Parmon VN, Lymar SV, Tsvetkov IM et al (1983) Development of microheterogeneous systems based on lipid vesicles for photocatalytic charge separation in molecular converters of solar energy. J Mol Catal 21:353–363

    Google Scholar 

  141. Khramov MI, Parmon VN (1993) Synthesis of ultrafine particles of transition metal sulphides in the cavities of lipid vesicles and the light-stimulated transmembrane electron transfer catalysed by these particles. J Photochem Photobiol A: Chem 71:279–284

    Article  Google Scholar 

  142. Efimova EV, Lymar SV, Parmon VN (1994) 1,4-bis(1, 2, 6-triphenyl-4-pyridyl)benzene as a novel hydrophobic eletron relay for dihydrogen evolution in photocatalytic systems based on lipid vesicles. J. Photochem Photobiol A: Chem 83:153–159

    Article  Google Scholar 

  143. Tricot Y-M, Emeren Å, Fendler JH (1985) In situ generation of catalyst-coated CdS particles in polymerized and unpolymerized surfactant vesicles and their utilization for efficient visible-light induced hydrogen production. J Phys Chem 89:4721–4726

    Article  Google Scholar 

  144. Bergeld J, Kasemo B, Chakarov D (2008) Photocatalytic reactions at the graphite/ice interface. Phys Chem Chem Phys 10:1151–1155

    Article  Google Scholar 

  145. Hulteen JC, van Dyne RP (1994) Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. J Vac Sci Technol A 13:1553–1558

    Article  Google Scholar 

  146. Fredriksson H, Alaverdyan Y, Dmitriev A et al (2007) Hole-mask colloidal lithography. Adv Mater 19:4297–4302

    Article  Google Scholar 

  147. Johanek V, Laurin M, Grant AW et al (2004) Fluctuations and bistabilities on catalyst nanoparticles. Science 304:1639–1644

    Article  Google Scholar 

  148. Langhammer C, Zoric I, Kasemo B et al (2007) Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme. Nano Lett 7:3122–3127

    Article  Google Scholar 

  149. Komanicky V, Iddir H, Chang KC et al (2009) Shape-dependent activity of platinum array catalyst. J Am Chem Soc 131:5732–5733

    Article  Google Scholar 

  150. Brown EC, Wilke SK, Boyd DA et al (2010) Polymer sphere lithography for solid oxide fuel cells: a route to functional, well-defined electrode structures. J Mater Chem 20:2190–2196

    Article  Google Scholar 

  151. Seidel YE, Scheider A, Jusys Z et al (2010) Transport effects in the electrooxidation of methanol studied on nanostructured Pt/glassy carbon electrodes. Langmuir 26:3569–3578

    Article  Google Scholar 

  152. Olah GA, Goeppert A, Prakash GKS (2009) Beyond oil and gas: the methanol economy, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support by the Foundation for Strategic Environmental Research (Mistra, Dnr 2004-118), Ångpanneföreningen’s Foundation for Research and Development (09-370), the Environmental Foundation of the Swedish Association of Graduate Engineers and N-INNER through the Solar Hydrogen project (P30938-1 Solväte).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiefang Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Zhu, J., Chakarov, D., Zäch, M. (2011). Nanostructured Materials for Photolytic Hydrogen Production. In: Zang, L. (eds) Energy Efficiency and Renewable Energy Through Nanotechnology. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-638-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-638-2_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-637-5

  • Online ISBN: 978-0-85729-638-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics