Skip to main content

Abstract

In Chap. 3, a two-tier networked control architecture, which naturally augments preexisting, point-to-point control systems with networked control systems taking advantage of real-time wired or wireless sensor and actuator networks, is presented. The two-tier networked control architecture for systems with continuous and asynchronous measurements is first presented and then the design is extended to include systems with continuous and asynchronous measurements which involve time-varying measurement delays. Using a nonlinear continuous stirred tank reactor (CSTR) example and a nonlinear reactor–separator example, the two-tier control architecture is demonstrated to be more optimal compared with conventional control systems and to be more robust compared with centralized predictive control systems. The two-tier control architecture is also applied to the problem of optimal management and operation of a standalone wind–solar energy generation system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Camponogara, E., Jia, D., Krogh, B. H., & Talukdar, S. (2002). Distributed model predictive control. IEEE Control Systems Magazine, 22, 44–52.

    Article  Google Scholar 

  2. Christofides, P. D., & El-Farra, N. H. (2005). Control of nonlinear and hybrid process systems: Designs for uncertainty, constraints and time-delays. Berlin: Springer.

    Google Scholar 

  3. Fogler, H. S. (1999). Elements of chemical reaction engineering. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  4. Hofierka, J., & Suri, M. (2002). The solar radiation model for open source GIS: implementation and applications. In Proceedings of the open source GIS-GRASS users conference (pp. 1–19). Trento, Italy.

    Google Scholar 

  5. Khalil, H. K. (1996). Nonlinear systems (2nd ed.). New York: Prentice Hall.

    Google Scholar 

  6. Lin, Y., Sontag, E. D., & Wang, Y. (1996). A smooth converse Lyapunov theorem for robust stability. SIAM Journal on Control and Optimization, 34, 124–160.

    Article  MATH  MathSciNet  Google Scholar 

  7. Liu, J., Muñoz de la Peña, D., Ohran, B. J., Christofides, P. D., & Davis, J. F. (2008b). A two-tier architecture for networked process control. Chemical Engineering Science, 63, 5394–5409.

    Article  Google Scholar 

  8. Liu, J., Muñoz de la Peña, D., Ohran, B. J., Christofides, P. D., & Davis, J. F. (2010c). A two-tier control architecture for nonlinear process systems with continuous/asynchronous feedback. International Journal of Control, 83, 257–272.

    Article  MATH  MathSciNet  Google Scholar 

  9. Massera, J. L. (1956). Contributions to stability theory. Annals of Mathematics, 64, 182–206.

    Article  MathSciNet  Google Scholar 

  10. Muñoz de la Peña, D., & Christofides, P. D. (2008). Stability of nonlinear asynchronous systems. Systems & Control Letters, 57, 465–473.

    Article  MATH  MathSciNet  Google Scholar 

  11. Peinke, J., Anahua, E., Barth, S., Goniter, H., Schaffarczyk, A. P., Kleinhans, D., & Friedrich, R. (2008). Turbulence a challenging issue for the wind energy conversion. In Proceedings of 2008 European wind energy conference & exhibition. Brussels Expo, Belgium.

    Google Scholar 

  12. Qi, W., Liu, J., Chen, X., & Christofides, P. D. (2011). Supervisory predictive control of stand-alone wind–solar energy generation systems. IEEE Transactions on Control Systems Technology, 19, 199–207.

    Article  Google Scholar 

  13. Rawlings, J. B., & Stewart, B. T. (2008). Coordinating multiple optimization-based controllers: New opportunities and challenges. Journal of Process Control, 18, 839–845.

    Article  Google Scholar 

  14. Valenciaga, F., & Puleston, P. F. (2005). Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy. IEEE Transactions on Energy Conversion, 20, 398–405.

    Article  Google Scholar 

  15. Valenciaga, F., Puleston, P. F., Battaiotto, P. E., & Mantz, R. J. (2000). Passivity/sliding mode control of a stand-alone hybrid generation system. IEE Proceedings. Control Theory and Applications, 147, 680–686.

    Article  Google Scholar 

  16. Valenciaga, F., Puleston, P. F., & Battaiotto, P. E. (2001). Power control of a photovoltaic array in a hybrid electric generation system using sliding mode techniques. IEE Proceedings. Control Theory and Applications, 148, 448–455.

    Article  Google Scholar 

  17. Valenciaga, F., Puleston, P. F., & Battaiotto, P. E. (2004). Variable structure system control design method based on a differential geometric approach: application to a wind energy conversion subsystem. IEE Proceedings. Control Theory and Applications, 151, 6–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis D. Christofides .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Christofides, P.D., Liu, J., Muñoz de la Peña, D. (2011). Networked Predictive Process Control. In: Networked and Distributed Predictive Control. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-0-85729-582-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-582-8_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-581-1

  • Online ISBN: 978-0-85729-582-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics