Skip to main content

Calibration of Virtual Haptic Texture Algorithms

  • Chapter
  • 735 Accesses

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

Calibrating displays can be a time-consuming process. We describe a fast method for adjusting the subjective experience of roughness produced by different haptic texture synthesis algorithms. Efficiency results from the exponential convergence of the “modified binary search method” (MOBS) to a point of subjective equivalence between two virtual haptic textures. The method was applied to calibrate the modulation of the normal interaction force component against modulating a tangential friction force component. A table establishing the perceptual equivalence between parameters having different physical dimensions was found by testing 10 subjects. The method is able to overcome significant individual differences in the subjective judgement of roughness because roughness itself never needs to be directly estimated. A similar method could be applied to other perceptual dimensions provided that the controlling parameter be monotonically related to a subjective estimate.

Reprinted from Gianni Campion and Vincent Hayward, “Fast Calibration Of Haptic Texture Synthesis Algorithms.”IEEE Transaction on Haptics, Volume 2, Number 2, 85–93, 2009.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson, A.J., Johnson, C.A.: Comparison of the ASA, MOBS, and ZEST threshold methods. Vis. Res.46(15), 2403–2411 (2006)

    Article  Google Scholar 

  2. Bergmann-Tiest, W.M., Kappers, A.M.L.: Analysis of haptic perception of materials by multidimensional scaling and physical measurements of roughness and compressibility. Acta Psychol.121, 1–20 (2006)

    Article  Google Scholar 

  3. Campion, G., Hayward, V.: Fundamental limits in the rendering of virtual haptic textures. In: Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, WHC’05, pp. 263–270 (2005)

    Chapter  Google Scholar 

  4. Campion, G., Hayward, V.: On the synthesis of haptic textures. IEEE Trans. Robot.24(3), 527–536 (2008)

    Article  Google Scholar 

  5. Campion, G., Wang, Q., Hayward, V.: The Pantograph Mk-II: A haptic instrument. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’05, pp. 723–728 (2005)

    Google Scholar 

  6. Campion, G., Gosline, A.H., Hayward, V.: Does judgement of haptic virtual texture roughness scale monotonically with lateral force modulation? In: Proceedings of Eurohaptics. LNCS, vol. 5024, pp. 718–723. Springer, Berlin (2008)

    Google Scholar 

  7. Choi, S., Tan, H.Z.: Perceived instability of virtual haptic texture. III. Effect of update rate. Presence16(3), 263–278 (2007)

    Article  Google Scholar 

  8. Colgate, J.E., Schenkel, G.: Passivity of a class of sampled-data systems: Application to haptic interfaces. In: Proceedings of the American Control Conference, pp. 3236–3240 (1994)

    Google Scholar 

  9. Gosline, A.H.C., Hayward, V.: Eddy current brakes for haptic interfaces: Design, identification, and control. IEEE/ASME Trans. Mechatron.13(6), 669–677 (2008)

    Article  Google Scholar 

  10. Hayward, V., Armstrong, B.: A new computational model of friction applied to haptic rendering. In: Corke, P., Trevelyan, J. (eds.) Experimental Robotics VI. Lecture Notes in Control and Information Sciences, vol. 250, pp. 403–412 (2000)

    Chapter  Google Scholar 

  11. Hayward, V., Astley, O.R.: Performance measures for haptic interfaces. In: Giralt, G., Hirzinger, G. (eds.) Robotics Research: The 7th International Symposium, pp. 195–207. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  12. Ho, P.P., Adelstein, B.D., Kazerooni, H.: Judging 2D versus 3D square-wave virtual gratings. In: Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 176–183 (2004)

    Chapter  Google Scholar 

  13. Hollins, M., Bensmaia, S.J.: The coding of roughness. Can. J. Exp. Psychol.61(3), 184–195 (2007)

    Article  Google Scholar 

  14. Hollins, M., Bensmaïa, S.J., Karlof, K., Young, F.: Individual differences in perceptual space for tactile textures: Evidence from multidimensional scaling. Percept. Psychophys.62(8), 1534–1544 (2000)

    Article  Google Scholar 

  15. Kaernbach, C.: Slope bias of psychometric functions derived from adaptive data. Percept. Psychophys.69(8), 1389–1398 (2001)

    Article  Google Scholar 

  16. Klatzky, R.L., Lederman, S.J.: Tactile roughness perception with a rigid link interposed between skin and surface. Percept. Psychophys.61(4), 591–607 (1999)

    Article  Google Scholar 

  17. Klatzky, R.L., Lederman, S.J., Hamilton, C., Grindley, M., Swendsen, R.H.: Feeling textures through a probe: Effects of probe and surface geometry and exploratory factors. Percept. Psychophys.65, 613–631 (2003)

    Article  Google Scholar 

  18. Lawrence, M.A., Kitada, R., Klatzky, R.L., Lederman, S.J.: Haptic roughness perception of linear gratings via bare finger or rigid probe. Perception36(4), 547–557 (2007)

    Article  Google Scholar 

  19. Lederman, S.J., Klatzky, R.L., Hamilton, C.L., Ramsay, G.I.: Perceiving roughness via a rigid probe: Psychophysical effects of exploration speed and mode of touch. Haptics-E: Electron. J. Haptics Res.1 (1999), online

    Google Scholar 

  20. Lederman, S., Klatzky, R., Hamilton, C., Grindley, M.: Perceiving surface roughness through a probe: Effects of applied force and probe diameter. In: Proceedings of the ASME DSCD-IMECE (2000)

    Google Scholar 

  21. Legge, G.D., Parish, D.H., Luebker, A., Wurm, L.H.: Psychophysics of reading. XI. Comparing color contrast and luminance contrast. J. Opt. Soc. Am. A7(10), 2002–2010 (1990)

    Article  Google Scholar 

  22. Leškovský, P., Cooke, T., Ernst, M.O., Harders, M.: Using multidimensional scaling to quantify the fidelity of haptic rendering of deformable objects. In: Proceedings of Eurohaptics, pp. 289–295 (2006)

    Google Scholar 

  23. Lin, M., Otaduy, M. (eds.): Haptic Rendering: Foundations, Algorithms and Applications. A. K. Peters, Ltd, Wellesley (2008)

    Google Scholar 

  24. Seuntiens, P., Meesters, L., Ijsselsteijn, W.: Perceived quality of compressed stereoscopic images: Effects of symmetric and asymmetric jpeg coding and camera separation. ACM Trans. Appl. Percept.3(2), 95–109 (2006)

    Article  Google Scholar 

  25. Smith, A.M., Chapman, C.E., Deslandes, M., Langlais, J.S., Thibodeau, M.P.: Role of friction and tangential force variation in the subjective scaling of tactile roughness. Exp. Brain Res.144(2), 211–223 (2002)

    Article  Google Scholar 

  26. Stokes, M., Fairchild, M.D., Berns, R.S.: Precision requirements for digital color reproduction. ACM Trans. Graph.11, 406–422 (1992)

    Article  MATH  Google Scholar 

  27. Tolonen, T., Järveläinen, H.: Perceptual study of decay parameters in plucked string synthesis. In: Proceedings of the 109th Convention of Audio Engineering Society. Preprint no. 5205 (2000)

    Google Scholar 

  28. Tyrrell, R.A., Owens, D.A.: A rapid technique to assess the resting states of the eyes and other threshold phenomena: The modified binary search MOBS. Behav. Res. Meth. Instrum. Comput.20(2), 137–41 (1988)

    Article  Google Scholar 

  29. Weisenberger, J.M., Kreier, M.J., Rinker, M.A.: Judging the orientation of sinusoidal and square-wave virtual gratings presented via 2-DOF and 3-DOF haptic interfaces. Haptics-e1(4) (2000), online

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Andrew H.C. Gosline for the engineering of the eddy current brakes, Maarten W.A. Wijntjes and Ilja Frissen for advice with psychometric techniques. This work was funded by a Collaborative Research and Development Grant “High Fidelity Surgical Simulation” from the Natural Sciences and Engineering Council of Canada (nserc), and by Immersion Corp. Additional funding is from a Discovery Grant fromnserc for the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Campion .

Appendix: Appendix: Characteristic Numbers

Appendix: Appendix: Characteristic Numbers

9.1.1 9.8.1 Algorithm A

The Jacobian matrix of the force field is

$$ {\mathbf{J}_{\!\boldsymbol{f}}}_{\!\mbox{\scriptsize{\textsf{\textbf{A}}}}}(p) = -\kappa_0 \left[\begin{array}{c@{\quad}c} 0 & 0\\[4pt] -{h'_{\mbox{\scriptsize{\textsf{\textbf{A}}}}} (p^x)}& 1\end{array}\right].$$
(9.4)

Its norm is

$$\|{\mathbf{J}_{\!\boldsymbol{f}}}_{\!\mbox{\scriptsize{\textsf{\textbf{A}}}}}\|_2 = {\kappa}_{\mbox {\scriptsize{\textsf{\textbf{A}}}}} = \kappa_0 \sqrt{1+[{h'_{\mbox{\scriptsize{\textsf{\textbf{A}}}}} (p^x)}]^2 }$$
(9.5)

which gives

$$q_{\mbox{\scriptsize{\textsf{\textbf{A}}}}} = \max{\kappa}_{\mbox {\scriptsize{\textsf{\textbf{A}}}}} / \kappa_0 = \sqrt{1+[2\pi A/L]^2}$$
(9.6)

when\({h_{\mbox{\scriptsize{\textsf{\textbf{A}}}}} (p^{x})}=A\sin (2 \pi p^{x} /L)\).

9.1.2 9.8.2 Algorithm F

The Jacobian matrix of the force field is

$${\rm J}_{f_{\rm F} } (p) = - \kappa _0 \left[ {\begin{array}{*{20}c} {\mu \frac{{p^z }}{{d_{\max }^x }}(\frac{{{\rm d}dx}}{{{\rm d}px}} - h_{\rm F} (p^x )\frac{{{\rm d}d^x }}{{{\rm d}p^x }} - h'(p^x ))} & {\mu [1 - h_{\rm F} (p^x )]\frac{{d^x }}{{d_{\max }^x }}} \\ 0 & 1 \\ \end{array}} \right].$$
(9.7)

In the worst case and according to [10], (9.7) becomes:

$$ {\mathbf {J}}_{f_{\mathbf {F}} } (p) = - \kappa _0 \left[ {\begin{array}{*{20}c} {2\mu p^z (1/d_{\max }^x + \pi /L)} & {2\mu } \\ 0 & 1 \\ \end{array}} \right]. $$
(9.8)

For\({h_{\mbox{\scriptsize{\textsf{\textbf{F}}}}} (p^{x})}=\sin(2\pi p^{x} /L)\),\(q_{\mbox{\scriptsize{\textsf{\textbf{F}}}}} =\max \| {\mathbf{J}_{\!\boldsymbol{f}}}_{\!\mbox{\scriptsize{\textsf{\textbf{A}}}}}\|_{2} / \kappa_{0}\) can be quickly numerically computed since the value ofp z must be clamped to a maximum\(d^{z}_{\mathrm{max}}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2009 IEEE

About this chapter

Cite this chapter

Campion, G. (2009). Calibration of Virtual Haptic Texture Algorithms. In: The Synthesis of Three Dimensional Haptic Textures: Geometry, Control, and Psychophysics. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-0-85729-576-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-576-7_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-575-0

  • Online ISBN: 978-0-85729-576-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics