Skip to main content

Static Systems Identification

  • Chapter
System Identification

Part of the book series: Advanced Textbooks in Control and Signal Processing ((C&SP))

Abstract

In Chap. 5 we start with the identification of static linear systems, that is, no dynamics are involved. The output of a static system depends only on the input at the same instant and thus shows instantaneous responses. In particular, the so-called least-squares method is introduced. As will be seen in Chaps. 5 and 6, the least-squares method for the static linear case forms the basis for solving nonlinear and dynamic estimation problems. For the analysis of the resulting estimates, properties like bias and accuracy are treated. Special attention is paid to errors-in-variables problems, which allow noise in both input and output variables, to maximum likelihood estimation as a unified approach to estimation, in particular well-defined in the case of normal distributions, and to bounded-noise problems for cases with small data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Audoly, L. D’Angiò, M.P. Saccomani, C. Cobelli, Global identifiability of linear compartmental models—a computer algebra algorithm. IEEE Trans. Biomed. Eng. 45(1), 36–47 (1998)

    Article  Google Scholar 

  2. B.D.O. Anderson, Identification of scalar errors-in-variables models with dynamics. Automatica 21(6), 709–716 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Bard, Nonlinear Parameter Estimation (Academic Press, San Diego, 1974)

    MATH  Google Scholar 

  4. A. Bjork, Numerical Methods for Least Squares Problems (SIAM, Philadelphia, 1996)

    Google Scholar 

  5. R. Bellman, K.J. Åström, On structural identifiability. Math. Biosci. 7, 329–339 (1970)

    Article  Google Scholar 

  6. M.J. Box, Bias in nonlinear estimation. J. R. Stat. Soc., Ser. B, Stat. Methodol. 33(2), 171–201 (1971)

    MathSciNet  MATH  Google Scholar 

  7. M.J. Chapman, K.R. Godfrey, M.J. Chappell, N.D. Evans, Structural identifiability for a class of non-linear compartmental systems using linear/non-linear splitting and symbolic computation. Math. Biosci. 183(1), 1–14 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. F.L. Chernousko, A.A. Melikyan, Game Problems of Control and Search (Nauka, Moscow, 1978) (in Russian)

    Google Scholar 

  9. T.G. Doeswijk, K.J. Keesman, Linear parameter estimation of rational biokinetic functions. Water Res. 43(1), 107–116 (2009)

    Article  Google Scholar 

  10. N.R. Draper, H. Smith, Introduction to Linear Regression Analysis, 4th edn. Wiley Series in Probability and Statistics (Wiley, New York, 1998)

    Google Scholar 

  11. H.G.M. Dötsch, P.M.J. van den Hof, Test for local structural identifiability of high-order non-linearly parametrized state space models. Automatica 32(6), 875–883 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. N.D. Evans, M.J. Chapman, M.J. Chappell, K.R. Godfrey, Identifiability of uncontrolled nonlinear rational systems. Automatica 38(10), 1799–1805 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Fogel, Y.F. Huang, On the value of information in system identification-bounded noise case. Automatica 18, 229–238 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. G.H. Golub, C.F. Van Loan, An analysis of the total least squares problem. SIAM J. Numer. Anal. 17(6), 883–893 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. G.H. Golub, C.F. Van Loan, Matrix Computations, 2nd edn. (Johns Hopkins University Press, Baltimore, 1989)

    MATH  Google Scholar 

  16. K. Glover, J.C. Willems, Parametrizations of linear dynamical systems: canonical forms and identifiability. IEEE Trans. Autom. Control AC-19(6), 640–646 (1974)

    Article  MathSciNet  Google Scholar 

  17. M. Hong, T. Söderström, Relations between bias-eliminating least squares, the Frisch scheme and extended compensated least squares methods for identifying errors-in-variables systems. Automatica 45(1), 277–282 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Hong, T. Söderström, W.X. Zheng, A simplified form of the bias-eliminating least squares method for errors-in-variables identification. IEEE Trans. Autom. Control 52(9), 1754–1756 (2007)

    Article  Google Scholar 

  19. I. Ipsen, Numerical Matrix Analysis: Linear Systems and Least Squares (SIAM, Philadelphia, 2009)

    MATH  Google Scholar 

  20. K.J. Keesman, T.G. Doeswijk, Direct least-squares estimation and prediction of rational systems: application to food storage. J. Process Control 19, 340–348 (2009)

    Article  MATH  Google Scholar 

  21. K.J. Keesman, Membership-set estimation using random scanning and principal component analysis. Math. Comput. Simul. 32(5–6), 535–544 (1990)

    Article  MathSciNet  Google Scholar 

  22. K.J. Keesman, Weighted least-squares set estimation from l norm bounded-noise data. IEEE Trans. Autom. Control AC 42(10), 1456–1459 (1997)

    Article  MathSciNet  Google Scholar 

  23. K.J. Keesman, Bound-based identification: nonlinear-model case, in Encyclopedia of Life Science Systems Article 6.43.11.2, ed. by H. Unbehauen. UNESCO EOLSS (2003)

    Google Scholar 

  24. A. Kukush, I. Markovsky, S. Van Huffel, Consistent estimation in the bilinear multivariate errors-in-variables model. Metrika 57(3), 253–285 (2003)

    MathSciNet  Google Scholar 

  25. T.J. Koopmans, Linear regression analysis of economic time series. The Netherlands (1937)

    Google Scholar 

  26. K.J. Keesman, R. Stappers, Nonlinear set-membership estimation: a support vector machine approach. J. Inverse Ill-Posed Probl. 12(1), 27–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. A.B. Kurzhanski, Control and Observation Under Uncertainty (Nauka, Moscow, 1977) (in Russian)

    Google Scholar 

  28. M.J. Levin, Estimation of a system pulse transfer function in the presence of noise. IEEE Trans. Autom. Control 9, 229–335 (1964)

    Article  Google Scholar 

  29. M. Milanese, G. Belforte, Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors. IEEE Trans. Autom. Control AC 27(2), 408–414 (1982)

    Article  MathSciNet  Google Scholar 

  30. M. Milanese, Properties of least-squares estimates in set membership identification. Automatica 31, 327–332 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Milanese, J.P. Norton, H. Piet-Lahanier, E. Walter (eds.), Bounding Approaches to System Identification (Plenum, New York, 1996)

    MATH  Google Scholar 

  32. D.C. Montgomery, E.A. Peck, G.G. Vining, Introduction to Linear Regression Analysis, 4th edn. Wiley Series in Probability and Statistics (Wiley, New York, 2006)

    Google Scholar 

  33. G. Margaria, E. Riccomagno, M.J. Chappell, H.P. Wynn, Differential algebra methods for the study of the structural identifiability of rational function state-space models in the biosciences. Math. Biosci. 174(1), 1–26 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Milanese, A. Vicino, Optimal estimation theory for dynamic systems with set membership uncertainty: an overview. Automatica 27(6), 997–1009 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. I. Markovsky, J.C. Willems, B. De Moor, Continuous-time errors-in-variables filtering, in Proceedings of the IEEE Conference on Decision and Control, vol. 3 (2002), pp. 2576–2581

    Google Scholar 

  36. J.P. Norton, An Introduction to Identification (Academic Press, San Diego, 1986)

    MATH  Google Scholar 

  37. J.P. Norton, Identification and application of bounded-parameter models. Automatica 23(4), 497–507 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  38. J.P. Norton, Bound-based Identification: linear-model case, in Encyclopedia of Life Science Systems Article 6.43.11.2, ed. by H. Unbehauen. UNESCO EOLSS (2003)

    Google Scholar 

  39. V.V. Nguyen, E.F. Wood, Review and unification of linear identifiability concepts. SIAM Rev. 24(1), 34–51 (1982)

    Article  MathSciNet  Google Scholar 

  40. S. Ognier, C. Wisniewski, A. Grasmick, Membrane bioreactor fouling in sub-critical filtration conditions: a local critical flux concept. J. Membr. Sci. 229, 171–177 (2004)

    Article  Google Scholar 

  41. G. Pillonetto, C. Cobelli, Identifiability of the stochastic semi-blind deconvolution problem for a class of time-invariant linear systems. Automatica 43(4), 647–654 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. R.L.M. Peeters, B. Hanzon, Identifiability of homogeneous systems using the state isomorphism approach. Automatica 41(3), 513–529 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. M.P. Saccomani, S. Audoly, L. D’Angiò, Parameter identifiability of nonlinear systems: The role of initial conditions. Automatica 39(4), 619–632 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. F.C. Schweppe, Uncertain Dynamic Systems (Prentice-Hall, New York, 1973)

    Google Scholar 

  45. W. Scherrer, M. Deistler, A structure theory for linear dynamic errors-in-variables models. SIAM J. Control Optim. 36(6), 2148–2175 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. T. Söderström, Errors-in-variables methods in system identification. Automatica 43(6), 939–958 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. T. Söderström, Extending the Frisch scheme for errors-in-variables identification to correlated output noise. Int. J. Adapt. Control Signal Process. 22(1), 55–73 (2008)

    Article  MATH  Google Scholar 

  48. H.W. Sorenson, Parameter Estimation (Dekker, New York, 1980)

    MATH  Google Scholar 

  49. T. Söderström, U. Soverini, K. Mahata, Perspectives on errors-in-variables estimation for dynamic systems. Signal Process. 82(8), 1139–1154 (2002)

    Article  MATH  Google Scholar 

  50. J.M. van den Hof, Structural identifiability of linear compartmental systems. IEEE Trans. Autom. Control 43(6), 800–818 (1998)

    Article  MATH  Google Scholar 

  51. S. Vajda, K.R. Godfrey, H. Rabitz, Similarity transformation approach to identifiability analysis of nonlinear compartmental models. Math. Biosci. 93(2), 217–248 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  52. S. Van Huffel, I. Markovsky, R.J. Vaccaro, T. Söderström, Total least squares and errors-in-variables modeling. Signal Process. 87(10), 2281–2282 (2007)

    Article  MATH  Google Scholar 

  53. J.H. van Schuppen, Stochastic realization of a Gaussian stochastic control system. J. Acta Appl. Math. 35(1–2), 193–212 (1994)

    Article  MATH  Google Scholar 

  54. E. Walter, Identifiability of State Space Models. Lecture Notes in Biomathematics, vol. 46. (Springer, Berlin, 1982)

    MATH  Google Scholar 

  55. E. Walter, Bound-based Identification, in Encyclopedia of Life Science Systems Article 6.43.11.2, ed. by H. Unbehauen. UNESCO EOLSS (2003)

    Google Scholar 

  56. E. Walter, L. Pronzato, Qualitative and quantitative experiment design for phenomenological models—a survey. Automatica 26(2), 195–213 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  57. P.C. Young, Recursive Estimation and Time-series Analysis: An Introduction. Communications and Control Engineering (Springer, Berlin, 1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel J. Keesman .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Keesman, K.J. (2011). Static Systems Identification. In: System Identification. Advanced Textbooks in Control and Signal Processing. Springer, London. https://doi.org/10.1007/978-0-85729-522-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-522-4_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-521-7

  • Online ISBN: 978-0-85729-522-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics